

Beginners Guide to
SAS & STATA software

Developed by Vahé Heboyan

Supervised by Dr. Tim Park

Department of Agricultural & Applied Economics

Introduction

The purpose of this Guide is to assist new students in MS and PhD programs at the
Department of Agricultural & Applied Economics at UGA to get started with SAS and
STATA software. The guide will help beginning users to quickly get started with their
econometrics and statistics classes.

This guide is not designed to be a substitute to any other official guide or tutorial, but
serve as a starting point in using SAS and STATA software. At the end of this guide,
several links to the official and unofficial sources for advanced use and more information
will be provided.

This guide is based on the so-called pre-programmed canned procedures.

Using built-in help

Both SAS and STATA have build-in help features that provide comprehensive coverage
of how to use the software and syntaxes (command codes).

• In SAS: go to HELP → Books and Training → SAS Online Tutor

• In STATA: go to HELP and use first three options for contents, keyword search
and STATA command search, respectively.

 1

SAS Tutorial

1. Working with data

a. Reading data into SAS
The most convenient way to read data into SAS for further analysis is to
convert your original data file into Excel 97 or 2000. Make sure there are
no multiple sheets in the file. Usually default Excel has three sheets, make
sure you remove the last two. To read excel file (or other format) into SAS
library, follow the path below. For your own convenience, include the
names of the variables in the first row of your excel file. SAS will
automatically read those as variables names, which you can use to
construct command codes. For example if one of the variables if the price
of a commodity, then you may chose to name it as P or price.

File → Import Data → choose data format (default is Excel) → Next →
browse for the file → Next → create a name for your new file under
Member (make sure to keep the same WORK folder unchanged) → Next
→ you may skip this step and click on Finish.

On the left hand side of the SAS window there is a vertical sub-window
called Explorer and the default shows two directories: Libraries and File
Shortcuts. Double click on the Libraries, then Work folder and locate your
data file. Double click on it to view your loaded data. It should open in a
new window and have the following name – VIEWTABLE: WORK.name
of your file .

Remember that when you activate the SAS program. It opens there
additional sub-windows that have the following function/use:

• EDITOR – for inputting your command codes;
• LOG – to see the errors if any in your code after execution;
• OUTPUT – to view the output after successful execution of your

code.
After you load your data into SAS you can use the following command to
read it into the Editor window. Throughout this manual, the data file will
have the name test unless otherwise specified.

data test;

Reminder! Do not forget to put semicolons at the end! Now you may
move on with your analysis!
Warning: Some users have encountered problems when they close
VIEWTABLE window, i.e. the data file disappears. You may load it
again, or simply leave the window open.

 2

b. Creating the so-called ‘do-files’
You input your program in the default sub-window called EDITOR. You
may choose to save it for future use or editing. After you type the
commands or the first line of it, simply go to File → Save As…→ give a
new name and choose the directory. Anytime you need to use the
command, just call it from the same directory and it will open with the
information you saved the last. Remember to save your program before
you close the SAS or that particular editing sub-window.

Note: after you save it, the EDITOR sub-window will take a new name
based on the name you choose.

c. Examining the data
In SAS you can view your data as well as its summary statistics. For the
beginners, this is a good point to start with, as it gives you the opportunity
to see how SAS reads your data and also examine them.

To print your data on the Output menu, type the following:

data test; * indicates the data file to be used ;
proc print; * prints data found in the “test” file ;
run; * runs and executes the program ;

After you type these commands, click on the “running man” icon to
execute your commands (located on the top row of the SAS window). You
can view the results in the Output window.

Hints: Always finish your command program with “run;” and place the
cursor after it before you execute the command. You can always comment
the command lines by placing the text between star(*) and a semicolon(;)
as seen in the command above (in SAS the comments are automatically
turned into green and the executable command codes into blue).

To view summary statistics, use the command below. It will display the
mean, standard deviation, min and maxima of your data.

data test;
proc means;
run;

You may customize data examination by using descriptive
statistics options that are specified after the PROC MEANS
atement. An example is provided below: st

data test;
proc means max min; * generates max and min values of ;

* the dataset ;
run;

 3

The table below lists descriptive statistics options available in SAS.

Option Description
 CLM Two-sided confidence limit for the mean
 CSS Corrected sum of squares
 CV Coefficient of variation
 KURTOSIS Kurtosis
 LCLM One-sided confidence limit below the mean
 MAX Maximum value
 MEAN Average
 MIN Minimun value
 N Number of observations with nonmissing

values
 NMISS Number of observations with missing values
 RANGE Range
 SKEWNESS Skewness
 STDDEV / STD Standard Deviation
 STDERR Standard error of the mean
 SUM Sum
 SUMWGT Sum of the Weight variable values.
 UCLM One-sided confidence limit above the mean
 USS Uncorrected sum of squares
 VAR Variance

The following PROC statements in SAS assist in further exploration of
your data. They are used in the same manner as the PROC statements
discussed above (i.e. PROC PRINT and PROC MEANS).

Statements Description

proc contents Contents of a SAS dataset
proc print Displays the data
proc means Descriptive statistics
proc univariate More descriptive statistics
proc boxplot Boxplots
proc freq Frequency tables and crosstabs
proc chart ASCII histogram
proc corr Correlation matrix

d. Sorting data
One can easily sort raw data in SAS using the PROC SORT statement.
The default sorts in ascending order. You may also customize such that it
sorts in descending order. The command below will sort your data by the
values of the variable p.

 4

proc sort data=test; * starts PROC SORT statement ;
by descending p; * specifies the order & variable ;

run; * executes the code ;

e. Creating new variables
Using your initial data set you can create new variables in SAS. For
example if you want to transform your original data into logarithmical
form, the code below may be used. Assume that in your original data set
you had three variables (variable names in the file are provided in the
parenthesis):

a) Quantity (q);
b) Price (p); and
c) Exchange rate (ex);

data test2; * indicates the new file to be created...;

* with the new variable(s);
set test; * indicates the file where original data are ;
lnq=log(q); * specifies the new variable lnq ;
lnp=log(p); * specifies the new variable lnp ;
lnex=log(ex); * specifies the new variable lnex ;
proc print; * prints the new data file ;
run;

The code above prints the original variables as well as the newly created
ones. If you want to print only the new ones and delete the old ones, use
the command below.

data test2; * indicates the new file to be created...;

* with the new variable(s);
set test; * indicates the file where original data are ;
lnq=log(q); * specifies the new variable lnq ;
lnp=log(p); * specifies the new variable lnp ;
lnex=log(ex); * specifies the new variable lnex ;
drop q p ex; * drops (deletes the old data)
proc print; * prints the new data file with new variables;

* only;
run;

When creating new variables you can use the basic mathematical
expressions, such as multiplying (*), dividing (/), subtracting (-), adding
(+), exponentiation (**), etc.

Remember: the name of the new data file cannot be the same as the
original one.

f. Creating dummies
Dummy variables are commonly used to specify qualitative characteristics
of some variables such as gender, race, and geographical location. For
example, when gender of the consumer/respondent is introduced into a

 5

model, one may assign female consumers value of 1 (one) and 0 (zero) to
the male consumers. Dummies may also be used to separate a variables in
the original dataset based on a pre-defined formula. See more on dummy
variables in your Econometrics textbook.

Assume we have a data set called consumer.xls which contains data on
respondents’ consumption of cheese (q), cheese price (p), household
annual income (inc), respondent’s age (age), and gender (sex). In the
original data set gender is coded as ‘m’ for male and ‘f’ for female. Age is
coded according to the actual age.

In order to incorporate the gender variable (sex) into the model we need to
assign it a numeric value. SAS will not be able to use original gander data
for analysis (i.e. it will not accept ‘m’ and ‘f’ as values for gender
variable).

Now we need to create a dummy variable for gender variable.
Additionally, we may want to group the respondents in 2 groups according
to their age; i.e. one group will include young consumers (up to 25 years
of age) and older consumers (25 and above). The code below will helps to
make the changes and prepare data for further analysis.

data consumer; * read original data ;
proc print; * print on screen to view data;

data consumer_2; * name the new data-file ;
set consumer; * indicates the file with original data ;

if sex = "m" then d1 = 1; * define gender dummy ;
ELSE d1 = 0;

if age > 25 then d2 = 1; * define age group dummy ;
ELSE d2 = 0;

proc print; * print on screen to view data ;
run; * execute the program ;

Note: d1 and d2 are the news for newly created dummy variables. You
may name them as you wish.

2. Estimation
This section introduces to the Ordinary Least Squares (OLS) estimation, model
diagnostics, hypothesis testing, confidence intervals, etc.

a. Linear regression

SAS PROC procedure lets to do OLS estimation using a simple command
instead of writing down the entire program. The PROC REG procedure
incorporates the entire command that is necessary for OLS estimation.

 6

To estimate a regression model using OLS procedure, use the following
command below.

proc reg data=test; * starts OLS & specifies the data;
model q = p t; * specifies the model to be estimated;
run;

When specifying the model, after the keyword MODEL, the dependent
variable is specified, followed by an equal sign and the regressor
variables. Variables specified here must be only numeric. If you want to
specify a quadratic term for variable p in the model, you cannot use p*p in
the MODEL statement but must create new variable (for example,
psq=p*p) in the DATA step discussed above.

The PROC REG and MODEL statements do the basic OLS regression.
One may use various options available in SAS to customize the regression.
For example, if one needs to display residual values after the regression is
complete, one may use the option commands to do so. A sample list of
options available in SAS are listed in the table below. Check the SAS
online help for more options. Options are specified in the following way:

proc reg data=test;
model q = p t / option ;
run;

NOTE: The default level of significance in SAS is set at 95%. To change it
use the appropriate option that is listed in the table below.

Option Description
These options are set after the PROC REG statement with just a space
between them. For example proc reg option;
ALPHA = number Sets the significance level used for construction of

confidence intervals. The value must be between 0
and 1. The default value of 0.05 results in 95%
intervals.

CORR Displays the correlation matrix for all variables
listed in the MODEL statement.

DATA=datafile Names the SAS data set to be used by PROC REG.
SIMPLE Displays the sum, mean, variance, standard

deviation, and uncorrelated sum of squares for
each variable used in PROC REG.
NOTE: this option is used with the PROC REG
statement only. Will not work with the MODEL
statement. Example:
data test;
proc reg simple;
model q = p t;
run;

 7

 The table below lists the options available for MODEL statement.

Option Description
These options are specified in the MODEL statement after a slash (/).
For example, model q = p t / option;
NOINT Fits a model without the intercept term
ADJRSQ Computes adjusted R2

ACOV Displays asymptotic covariance matrix of
estimates assuming heteroscedasticity

COLLIN Produces collinearity analysis
COLLINOINT Produces collinearity analysis with intercept

adjusted out
COVB Displays covariance matrix of estimates
CORRB Displays correlation matrix of estimates
CLB Computes 100(1-α)% confidence limits for

the parameter estimates
CLI Computes 100(1-α)% confidence limits for an

individual predicted value
CLM Computes 100(1-α)% confidence limits for

expected value of the dependent variable
DW Computes a Durbin-Watson statistic
P Computes predicted values
ALL Requests the following options: ACOV, CLB,

CLI, CLM, CORRB, COVB, I, P, PCORR1,
PCORR2, R, SCORR1, SCORR2, SEQB,
SPEC, SS1, SS@, STB, TOL, VIF, XPX. For
the options not discussed here, see SAS online
help.

ALPHA = number Sets the significance level used for
construction of confidence and prediction
intervals and tests. The value must be
between 0 and 1. The default value of 0.05
results in 95% intervals.

NOPRINT Suppresses display of results
SINGULAR= Sets criterion for checking for singularity

b. Testing for Collinearity
The COLLIN option performs collinearity diagnostics among regressors.
This includes eigenvalues, condition indices, and decomposition of the
variance of the estimates with respect to each eigenvalue. This option can
be specified in a MODEL statement.

data test;
proc reg;
model q = p t / collin;
run;

 8

NOTE: if you use the collin option, the intercept will be included in the
calculation of the collinearity statistics, which is not usually what you
want. You may also use collinoint to exclude the intercept from the
calculations, but it still includes it in the calculation of the regression.

c. Testing for Heteroskedasticity
The SPEC option performs a model specification test. The null hypothesis
for this test maintains that the errors are homoskedastic, independent of
the regressors and that several technical assumptions about the model
specification are valid. It performs the White test. If the null hypothesis is
rejected (small p-value), then there is an evidence of heteroskedasticity.
This option can be specified in a MODEL statement.

data test;
proc reg;
model q = p t / spec;
run;

d. Testing for Autocorrelation

DW option performs autocorrelation test. It provides the Durbin-Watson d
statistics to test that the autocorrelation is zero.

data test;
proc reg;
model q = p t / dw;
run;

e. Hypothesis testing

In SAS you can easily test single or joint hypothesis after you successfully
complete the estimation. For example, if we want to test the null
hypothesis that the coefficient of the p variable is 1.5 (i.e. βp=1.5), then the
following command will be used.

proc reg data=test;
model q = t; p
test p = 1.5; * sets up the hull hypothesis ;
run;

NOTE: remember that you can always look at the t-values and p-values in
the Parameter Estimation section of SAS output for the null hypothesis of
coefficient is zero ()0=iβ .

To test the joint hypothesis of βp=1.5 and βt=0.8 the command below may
be used.

proc reg data=test;
model q = p t;
test p = 1.5, t = 0.8; * sets up the hull hypothesis ;
run;

 9

 Use the command below to test the hypothesis of βp + βt = 2.3.

proc reg data=test;
model q = p t;
test p + t = 2.3; * sets up the hull hypothesis ;
run;

NOTE: in the TEST statement the names of the variables are specified.
SAS will automatically associate those with their coefficients.

3. Creating plots
The PLOT statement in SAS enables to create scatter plots on Y-X axis
(vertical-horizontal). Use the command below to create the basic plot.

proc reg data=test; * starts OLS regression ;
model q = p t;
plo ;t q*p; * specifies the Y and X
run; * executes the command ;

After executing this command, a new window will open with your q
variable on vertical axis (Y) and p variable on horizontal axis (X).

You may also create multiple plots using the same command line. The
code below will create various combinations of plots using the same sets
of variables.

 proc reg data=test;
 plot p*q p*t q*t;

run;

The command above will create three separate scatter plots. One may use
the code below for identical plotting. Both codes will create the same sets
of scatter plots.

 proc reg data=test;
 plot (p q)*(q t);

run;

In many applications you will required to plot model residuals against a
particular variable. Use the command below to do so.

proc reg data=test;
model q = p t;
plo t r.*q; * r. in SAS stands for residual ;
run;

The table below shows a number of other keywords that can be used with
the PLOT statement and the statistics they display. Note that the

 10

keywords should be used in the PLOT statement line and be constructed as
the one in the case with the residual above. For example,

plot residual.*COOKD.;

Keyword * Statistics

COOKD. Cook's D influence statistics
COVRATIO. standard influence of observation on

covariance of betas
DFFITS. standard influence of observation on

predicted value
H. leverage
LCL. lower bound of 100(1-α)% confidence

interval for individual prediction
LCLM. lower bound of 100(1-α)% confidence

interval for the mean of the dependent
variable

PREDICTED. (PRED. ; P.) predicted values
PRESS. residuals from refitting the model with

current observation deleted
RESIDUAL. (R.) residuals
RSTUDENT. studentized residuals with the current

observation deleted
STDI. standard error of the individual predicted

value
STDP. standard error of the mean predicted value
STDR. standard error of the residual
STUDENT. residuals divided by their standard errors
UCL. upper bound of 100(1-α)% confidence

interval for individual prediction
UCLM. upper bound of 100(1-α)% confidence

interval for the mean of the dependent
variables

* The keywords in the parenthesis are the alternative keywords for the
same procedure. The use of either one is correct.

NOTE: the dot (.) after the keyword must be specified.

4. Weighted Least Squares Estimation
WLS is performed by adding a weight to the PROC REG statement. A WEIGHT
statement names a variable in the input data set with values that are relative
weights for a weighted least-squares fit. If the weight value is proportional to the
reciprocal of the variance for each observation, then the weighted estimates are
the best linear unbiased estimates (BLUE).

 11

Values of the weight variable must be nonnegative. If an observation's weight is
zero, the observation is deleted from the analysis. If a weight is negative or
missing, it is set to zero, and the observation is excluded from the analysis. An
example is provided below.

proc reg data=test;
model q = p t;
weight p; * specifies the weight variable ;
run;

5. GLM Regression

PROC GLM analyzes data within the framework of General linear models. PROC
GLM handles models relating one or several continuous dependent variables to
one or several independent variables. The independent variables may be either
classification variables, which divide the observations into discrete groups, or
continuous variables.

The general GLM statement is provided below:

proc glm data=test;
model dependent(s) = independent(s) / options;
run;

For the detailed description of PROC GLM statement and options available to
estimate general linear models please see the “The GLM Procedure” document
available online through the SAS Institute.

 http://www2.stat.unibo.it/ManualiSas/stat/chap30.pdf

6. Seemingly Unrelated Regression

Assume we have two regression models:

science = math female
write = read female

It is the case that the errors (residuals) from these two models would be correlated
because all of the values of the variables are collected on the same set of
observations. In this situation we can use seemingly unrelated regression to
estimate both models simultaneously while accounting for the correlated errors at
the same time, leading to efficient estimates of the coefficients and standard
errors. For this purpose we use PROC SYSLIN statement with option SUR. The
PROC SYSLIN estimates both models simultaneously. Below is an example of
SUR regression.

proc syslin data=test SUR;
model science = math female ;
model write = read female ;
run;

 12

http://www2.stat.unibo.it/ManualiSas/stat/chap30.pdf

The first part of the output consists of the OLS estimate for each model. The
second part of the output gives an estimate of the correlation between the errors of
the two models. The last part of the output will have the seemingly unrelated
regression estimation for our models. Note that both the estimates of the
coefficients and their standard errors are different from the OLS model estimates
shown above.

NOTE: one can easily conduct SUR estimation using 3 and more models. Th
procedure is the same. Just add another MODEL statement.

7. Non-Linear Estimation

f. LOGIT
PROC LOGISTIC statement in SAS performs logistic regression. It is
necessary to include descending option when a variable is coded 0/1 with
1 representing the event whose probability is being modeled. This is
needed so that the odds ratios are calculated correctly.

proc logistic data=test descending ;
model payment = income age gender ;
run;

For the detailed description of PROC LOGISTIC statement and options
available to conduct logistic regression please see the “The LOGISTIC
Procedure” document available online through the SAS Institute.

http://www2.stat.unibo.it/ManualiSas/stat/chap39.pdf

g. PROBIT
PROC PROBIT statement in SAS computes maximum likelihood
estimates of regression parameters and the natural (or threshold) response
rate for quantal response data. It estimates the parameters β and C of
probit equation using a modified Newton-Raphson algorithm.

The general PROBIT statement is provided below:

PROC PROBIT DATA=file < options > ;

CLASS variables ;
MODEL response=independents < / options > ;
BY variables ;
OUTPUT < OUT=SAS-data-set > <options > ;
WEIGHT variable ;

For the detailed description of PROC PROBIT statement and options
available to conduct maximum likelihood estimation please see the “The
PROBIT Procedure” document available online through the SAS Institute.

http://www2.stat.unibo.it/ManualiSas/stat/chap54.pdf

 13

http://www2.stat.unibo.it/ManualiSas/stat/chap39.pdf
http://www2.stat.unibo.it/ManualiSas/stat/chap54.pdf

8. External Resources
This manual contains the basic information that will be needed to start learning
the SAS software. For more advanced use, I will encourage to use the resources
available through the SAS software help or others that are available through other
organizations. For your convenience, two sources containing one of the most
comprehensive resources are listed below:

a. SAS/STAT User Guide (PDF files). Dipartimento di Scienze Statistiche

"Paolo Fortunati", Bologna, Italia. Available at:
http://www2.stat.unibo.it/ManualiSas/stat/pdfidx.htm

Contains downloadable PDF files on all procedures available in SAS
(Version 8). This is a very comprehensive source and I would personally
encourage using it.

b. SAS Learning Resources. University of California at Los Angeles

Academic Technology Services. Available at:
http://www.ats.ucla.edu/stat/sas/

Contains learning resources that help to master SAS software including
text and audio/video resources. This is especially useful for those who just
started to learn SAS.

 14

http://www2.stat.unibo.it/ManualiSas/stat/pdfidx.htm
http://www.ats.ucla.edu/stat/sas/

STATA® Tutorial

1. Introduction to STATA

a. Limitations

The current version of STATA that is used at the Department of Agricultural
and Applied Economics at UGA is the Intercooled STATA that has the
following limitations:

b. Max number of variables - 2,047
c. Max number of observations - 2,147,483,647 (limited to memory)
d. Max number of characters

for a string variable - 80
e. Matrices - 800 x 800

b. STATA toolbar and window

STATA toolbar consists of several buttons that have the following
functions.

open print viewer graph data editor more

save log results do-file editor data browser break

open: open a STATA dataset
save: save a dataset
print: print contents of active window
log: to start or stop, pause or resume a log file
viewer: open viewer window, or bring to the front
results: open results window, or bring to the front
graph: open graph window, or bring to the front
do-file editor: open do-file editor, or bring window to the front
data editor: open data editor, or bring window to the front
data browser: open data browser, or bring window to the front
more: command to continue when paused in long output
break: stop the current task. This command returns the system

to as it was before you issued the command.

 15

The default STATA working window has the following view. The
descriptions of the individual components are provided below.

Past command appear here Results appear here

Working directory
displayed here

Variable list
displayed here

Commands typed
appear here

c. STATA Transfer
This is a separate package that is used to convert a variety of different file-
types into other formats. For example, you can easily convert Excel into
STATA or vice versa.

 16

2. Working with data

a. Creating the so called ‘do-files’
Even though you can directly type your command statements in the
STATA Command window, it is advised to create a STATA do-file,
which will allow you skip typing each statement line every time you need
to re-run the program as well as for the use in the future. Just click on the
“do-file editor” button and save it. Now you can start writing your
program in do-file editor window and execute the program directly from
there by selecting Tools → DO or simply using your keyboard, Ctrl+D.

NOTE: Unlike SAS, in STATA you do not end the statement with
semicolons.

b. Loading data into STATA data editor

To read data in STATA you can either convert the original file into
STATA-friendly format or simply create STATA data file (*.dta). Follow
the steps below to create a STATA data file.

a) Copy data from the original file. For example notepad or Excel.
b) Open STATA data editor (see Section 1b: STATA toolbar and

window) and paste copied data into the editor. If you copy the
variable names from the original data file, then after pasting
STATA data editor will use them as variable headings when
creating a new file. Otherwise, it will name the variables
according to its default procedures (e.g. var1, var2, etc.)

NOTE: throughout the text, var1, var2, etc. are generic variable
names.

c) Click on Preserve (in Data Editor) and close the Data Editor
window.

d) Go to STATA window and select
- File → Save As… → choose Stata Data file→ Save

e) Now you can use that file for your estimation.

c. Reading data into STATA
There are two primary ways of uploading data into STATA. The use of
either one will depend on personal preferences. Instructions for both are
provided below.

i. When using non-STATA data file, make sure to convert it into
*.csv (Excel comma separated values) format or any other that is
readable in STATA. For such data use the following statement:

insheet using “C:\MyDocuments\test.csv”

 17

NOTE: Always put the file path into quotation marks. It is also
suggested to use the clear statement before the insheet
statement to clear the use of previous dataset(s), unless otherwise
needed. Regular *.xls file format is not accepted by STATA.

clear
insheet using “C:\MyDocuments\test.csv”

ii. When using STATA data file (see Section 2.b) use the following
statement:

clear
use "C:\MyDocuments\test.dta"

d. Changing memory

There is a default memory volume set in STATA (=1m), which may not
always be enough for your estimation. To change the memory assigned to
STATA use the following statement:

set mem #k

where # is a number greater than the size of the dataset, and less than the
total amount of memory available on your system and k defines the usnit
of measurement. In this case it means kilobytes. To use megabytes, use m
instead of k. Usually setting memory to 100m will be adequate for most
analysis.

NOTE: To use comments in STATA, simply start your comment from a
new line and a star (*) before the comment text. For example, in the
statement below, the first line is a comment and will not be used by STATA
as a command statement.

* set new memory volume
set mem #k

e. Saving files
To save a data file, use the following statement;

save, replace [overwrites current file]
save filename, replace [saves file as filename. Replace is

 optional, but necessary if a file of
 that name already exists.]

where filename is the name you give to the file.

NOTE: The statements above will save the file in the same directory
where the original file is located.

 18

f. LOG files
You can save all output appearing in the Results window in a log file. The
log file can be saved either as a STATA markup and Control Language
(SMCL) or as a text (ASCII) file. SMCL is the default format in STATA.
Please note that the SMCL logs cannot be read by other packages and
should only be read and printed from the Viewer.

- To start a log, use the statement below:

 log using filename [starts an SMCL log]
 log using filename, replace [overwrites filename.smcl]
 log using filename.log [starts a text log]

- To translate a SMCL log file to text, go to File → Log → Translate

- If you want to create a log file that only contains the results and not

command statements. You can use pause and resume options as
illustrated below:

 log off [temporarily suspends log file]
 log on [resumes log file]

- To close a log file, use the statement below:

 log close [closes current log file]

NOTE: As in the do-file, you can add comments in a new line preceded by
a star (*).

g. Controlling output
-more- may appear in your Results window when the output is longer
than the screen height. At anytime you can press Enter to see the next line
or simply click on -more- to go to the end of the listing. To turn off or
on the more command, use the following statement:

set more off
set more on

h. Examining the data
STATA has different alternatives for examining the datasets in STATA.
Their brief description and statements are provided below:

 19

NOTE: Throughout the rest of the text, the underlined portion of the
statement indicates that the portion may be used instead of the full
statement. For example,

- to produce summary of contents of a dataset

 describe [describes dataset in current memory]

NOTE: Throughout the rest of the text, the underlined portion of the
statement indicates that the portion may be used instead of the full
statement. For example, the statement d in the statement (describe)
above serves exactly the same purpose as the full statement describe.

 d using filename [describes a stored STATA dataset]
 d varlist [describes a subset of a dataset]

where varlist is the specified variable(s). You may simply list the
variables you want to be described with a space in-between. For
example,

d var1 var2 var3

- To calculate and display a variety of summary statistics, use the
command statement below;

 summarize [summarize whole dataset]
 su varlist [summarize subset varlist]
 su, d [outputs detailed summary]
su variable1, d [outputs detailed summary of variable1]

- The most detailed examination of data is performed using list

statement. It displays the values of variables by observation.

 list [lists all variables by observation]
 l varlist [lists specified variable(s)]

- To close a log file, use the statement below:

 log close [closes current log file]

NOTE: the arguments illustrated below can be used with all descriptive
statements discussed above, except otherwise stated.

d var4-var7 [describes variables between var4 and var7]

 20

HINT: To sort a dataset in an alphabetical order, use the statement
below:

aorder varlist [if no variable is specified, it will sort the

entire dataset]

su abc* [summarize all variables beginning with the string abc*]
su abc?5 [summarize all variables beginning with the string

abc and ending with 7]

The statements below work only with list command.

list in 3 [list the 3rd observation]
list in -3 [list the 3rd from last observation]
list in 11/29 [list observations 11 through 29]
list in 7/-2 [list observation 7 to 2nd from last]

- To view extra information on the variables, such as summary statistics of
numerics, example data-point of strings, details of missing values, data
ranges, etc. use codebook command statement. If not variable name is
specified, the command will give information on all variables in the
dataset.

i. Sorting data

The sort statement in STATA allows sorting data into ascending order of
the values of the variables of varlist.

sort var1 [sorts data by the values of the variable var1]

To sort in descending order, use the following statement:

gsort -var1

NOTE: notice that the variable listed with gsort statement has minus
sign in front of it.

j. Creating new variables
i. The generate and egen commands in STATA are used to create

new variables. The statements below create variables that are algebraic
expressions of others.

g varNEW=var2*var3 [creates new variable that is the

product of var2 and var3]

 21

g varNEW=var2+var3 [creates new variable that is the sum
of var2 and var3]

g varNEW=exp(var8/var2) [creates new variable that is

the exponential of the ratio of
var8 and var2]

g varNEW=log(var1) [creates new variable that is the

natural logarithm of var1]

g varNEW=var2^3 [creates new variable as 3rd power of var2]

NOTE: statement gen may also be used along with generate & g.

ii. The egen command typically creates new variables based on
summary measures, such as sum, mean, max and min.

egen varNEW=sum(var2) [sum of var2]
egen varNEW=max(var1) [largest value in var1]

egen varNEW=mean(var3) [average value of var3]

egen varNEW=count(var1) [counts number of non-

missing observations]

iii. The following statement replaces the old variable (varOLD) with the
new one (varNEW).

replace varOLD=var2*var3 [replaces the varOLD with

the new variable that is the
product of var2 and var3]

iv. There are other two cases where replace statement is used.

(1) Assume that we want to create a new variable (varNEW) from
the existing variable based on some specified criteria. For
example, given the age of the respondents (AGE), we want to
group them into 3 (three) group-ranges: 0-25; 26-60; and 61 and
above. The statements below will create the new variable, say
agerange, based on the listed criteria.

g agerange= . [creates variable agerange that has missing

values]

 22

replace agerange = 1 if 0<age & age<=25
[replace the agerange with 1 if the condition
is met, i.e. 0<age<25]

replace agerange = 2 if 26<=age & age<=60

[replace the agerange with 2 if the condition
is met, i.e. 25<var2<60]

replace agerange = 3 if age>60
[replace the agerange with 3 if the condition
is met, i.e. age>60]

NOTE: in STATA (.) stands for missing values. i.e. the
statement above simply creates a new variable that has no values
for any of the observations.

The list of relational operators used in STATA is:

== equal to
~= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

(2) To create a dummy variable. For the case above, we want to

create a dummy variable for the age. The new variable, say
dummy, takes value of zero (0) if the respondent’s age is below
35 and value of one (1), if the age is more than 35. The statement
below will do it.

g dummy=0
replace dummy=1 if age>35

alternatively,

g dummy = .
replace dummy=0 if 0<age & age<=35
replace dummy=1 if age>35

NOTE: Both statements will produce the same desired results.

v. String variables. In STATA values for string variables are denoted by

inverted commas – “ ”. For example, if we want to create a new string
variable that will take the string-values of “KID” and “ADULT” for
the ages of 0-18 and 19 and above, respectively. The statements below
will generate the new string variable.

 23

g string = “ ” [will create string variable w/ empty values]
replace string= “kid” if age<=18
replace string= “adult” if age>=19

alternatively,

g string = “kid” [creates string with values kid]
replace string= “adult” if age>=19

vi. Lags and leads

- To generate lagged variable, use the following command:
 gen varNEW = var1[_n-1]

- To generate a lead variable, use the statement below:
 gen varNEW = var1[_n+1]

- One can always do additional manipulation with data when creating

lagged or lead variables. For example, the command below will
create lagged variable for var1 and will also raise the new variable to
the 2nd power.

gen varNEW = var1[_n-1]^2

NOTE: all examples above would create lags of one period. To create
other lags, simply replace 1 in [_n-1] with the desired number of
periods. For example, [_n-5] will create lags of 5 periods.

k. Keep and Drop statements

The original dataset may contain many variables that may not be of
your interest. You may alter the dataset before reading into STATA or
do it in STATA. You can tell STATA to either keep what you want or
drop what you do not want. The results are the same. Assume dataset
has 10 (ten) variables, named var1 to var10. variables of interest are
only var1, var3 and var6.

keep var1 var3 var6

alternatively,

drop var2 var4 var5 var7 var8 var9 var10

alternatively,

drop var2 var4 var5 var7-var10

 24

After execution of any of the above statements, you will be left with
the variables of interest.

NOTE: the hyphen sign (-) in the third statement indicates that all
variables between var7 and var10 should be dropped. It is very useful
when you deal with many variables and do not want to type all names
individually.

You can also apply those two statements to observations. For example,
we have annual observations for 1900-2006, but the observations of
interest are only 1945-2006. Using the statements below, we will
eliminate all undesired observations. Assume we have a time variable
called year which takes four-digit values for years.

keep if year >= 1945

alternatively,

drop if year < 1945

NOTE: refer to the list of relational operators used in STATA
discussed in the previous sections.

To keep the observations between years 1915 and 1923, use the
statement below.

keep if year>=1915 & year<=1923

alternatively,

drop if year<1915 | year>1923

To keep the observations between 1915-1923 and 1988-1994, use the
following statement.

keep if (year>=1915 & year<=1923) | (year>=1988 & year<=1994)

NOTE: logical operators in STATA are:

 & and
 | or
 ~ not

 25

You may keep or drop observations with specific values (numeric
and/or string).

drop if var3 == . [drops observations with missing

values]

drop if var3 == “young” [drops observations for which

var3 takes string-value
young]

drop if _n <= 10 [drops observations 1 to 10]

drop if _n == _N [drops the last observation in

the dataset]

There are cases when working with databases where the same
observation type occurs more than once you are interested in the first
one only. For example, suppose that the data has each store manager
stacked one on top of the other and you only want to keep the first
observation of each store manager. The statement below will eliminate
undesired observations.

drop if manager[_n]==manager[_n-1]

alternatively,

drop if manager==manager[_n-1]

3. Creating graphs, plots & histograms
The statements in this section will help to successfully illustrate your data using
graphs, plots and histograms.

NOTE: you can always learn more by exploring STATA help, which contains
additional info on the statements in this section as well as options available for
them. For example, exploring STATA help for graphs (simply type help graph
in the command window) will help you to customize graphs, plots and histograms,
such as adding/changing legends, labels, titles, color schemes, etc.

a. twoway is a family of plots, all of which fit on numeric y and x scales. The
basic command statement for it is:

twoway plottype varlist

where, plottype indicates the type of plot requested and varlist lists
variables of interest. Table below lists plot-types available in STATA.

 26

Plot type Description
scatter scatter plot
line line plot
connected connected-line plot
scatteri scatter with immediate arguments
area line plot with shading
bar bar plot
spike spike plot
dropline dropline plot
dot dot plot
rarea range plot with area shading
rbar range plot with bars
rspike range plot with spikes
rcap range plot with capped spikes
rcapsym range plot with spikes capped with symbols
rscatter range plot with markers
rline range plot with lines
rconnected range plot with lines and markers
pcspike paired-coordinate plot with spikes
pccapsym paired-coordinate plot with spikes capped

with symbols
pcarrow paired-coordinate plot with arrows
pcbarrow paired-coordinate plot with arrows having

two heads
pcscatter paired-coordinate plot with markers
pci pcspike with immediate arguments
pcarrowi pcarrow with immediate arguments
tsline time-series plot
tsrline time-series range plot
mband median-band line plot
mspline spline line plot
lowess LOWESS line plot
lfit linear prediction plot
qfit quadratic prediction plot
fpfit fractional polynomial plot
lfitci linear prediction plot with CIs
qfitci quadratic prediction plot with CIs
fpfitci fractional polynomial plot with CIs
function line plot of function
histogram histogram plot
kdensity kernel density plot

b. graph matrix draws scatter plot matrices. The basic command statement

for it is:

graph matrix varlist

 27

c. graph bar draws vertical bar charts. In a vertical bar chart, the y axis is
numerical, and the x axis is categorical. The basic statement for it is:

graph bar numeric_var, over(cat_var)

where, numeric_var must be numeric; statistics of it are shown on the y
axis. cat_var may be numeric (such as time horizon) or string (such as
group names); it is shown on the categorical x axis.

NOTE: to draw horizontal bar charts, change bar syntax to hbar. Such as
graph hbar numeric_var, over(cat_var)

d. graph dot draws horizontal dot charts. In a dot chart, the categorical axis
is presented vertically, and the numerical axis is presented horizontally. Even
so, the numerical axis is called the y axis, and the categorical axis is still
called the x axis:

graph dot numeric_var, over(cat_var)

e. graph box draws vertical box plots. In a vertical box plot, the y axis is

numerical, and the x axis is categorical.

graph box varlist, over(cat_var)

f. graph pie draws pie charts. graph pie has three modes of operation.

The first corresponds to the specification of two or more variables. The
statement below will draw four pie slices using listed variables.

graph pie var1 var2 var3 var4

The second mode of operation corresponds to the specification of a single
variable and the over() option. The statement below will draw pie slices
for each value of cat-var; i.e. the first slice corresponds to the sum of
var1 for the first cat-var, the second to the sum of var1 for the second
cat-var, and so on.

graph pie var1, over(cat_var)

The third mode of operation corresponds to the specification of over()
with no variables. Pie slices will be drawn for each value of variable var2.
The number of slices corresponds to the number of observations in each
group.

graph pie, over(var2)

 28

g. histogram draws histograms of varname. The statement takes only one
variable at a time.

histogram var1 [draws a histogram for var1]

4. Estimation

a. Linear regression
STATA uses regress or reg statements to fit a model of the dependent
variable on the independent variables using linear regression.

The basic statement has the following form:

regress depvar indepvars, options

where,
depvar - dependent variable
indepvars - independent variables
options - various options available for regress command
 (see table on the next page)

For example, to fit the model εββββ ++++= 3322110 xxxyt , the
following statement will be used.

regress y x1 x2 x3

With this statement STATA automatically adds a constant term or
intercept to the regression.

To estimate standard errors using the Huber-White sandwich estimator,
use the robust option.

regress y x1 x2 x3, robust

Weighted least squares
Most STATA statement can deal with weighted data. To weight your data
simply add the weight statement after the independent variables as shown
in the statement below.

regress y x1 x2 x3 [weighttype=varname]

Four kinds of weights are permitted in STATA:
1. frequency weights (fweights) indicate the number of duplicated

observations.

 29

2. sampling weights (pweights) denote the inverse of the probability
that the observation is included due to the sampling design.

3. analytic weights (aweights) are inversely proportional to the
variance of an observation; i.e., the variance of the j-th observation is
assumed to be sigma^2/w_j, where w_j are the weights.

4. importance weights (iweights) indicate the "importance" of the
observation in some vague sense. iweights have no formal
statistical definition; any command that supports iweights will
define exactly how they are treated. In most cases, they are intended
for use by programmers who want to produce a certain computation.

Assuming var3 is the variable in our data that contains the weight and we
want to use frequency weights, the statement will be:

regress y x1 x2 x3 [fweights = var3]

Table below lists commonly used options available in STATA.

Options Description
noconstant suppress constant term
hascons Has user-supplied constant
tsscons compute total sum of squares with

constant; seldom used
vce(vcetype) vcetype may be robust, bootstrap,

or jackknife
robust synonym for vce (robust)
cluster(varname) adjust standard errors for intragroup

correlation
mse1 force mean squared error to 1
hc2 use u^2_j/(1-h_jj) as observation's variance
hc3 use u^2_j/(1-h_jj)^2 as observation's

variance
level(#) set confidence level; default is

level(95)
beta report standardized beta coefficients
eform(string) report exponentiated coefficients and label

as string
noheader suppress the table header
Plus make table extendable
depname(varname) substitute dependent variable name;

programmer's option

 30

The correlate statement will show the correlations among specified
variables.

correlate varlist

b. Testing for Collinearity
We can use vif statement command available in STATA to check for
multicollinearity. vif stands for variance inflation factors for the
independent variables. In general, a variable that has VIF value of greater
than 10 may require further investigation. Many use the level of tolerance,
defined as 1/VIF, to check on the degree of collinearity. If a variable has a
tolerance value lower than 0.1 (i.e. vif greater than 10) it means that the
variable could be considered as a linear combination of other independent
variables. Code below will perform linear regression and check for the
presence of multicollinearity.

reg y x1 x2 x3
vif

Alternatively, we can use collin command to perform collinearity
diagnostics. Unlike the vif command that follows a regress
command, collin command does not need to be run with a regress
command but requires variable indication.

To use the White test, first you will need to download and install whitetst
within STATA. To find the source for downloading follow the steps
below:

1) type findit collin in the STATA command window
2) click on:

collin from http://www.ats.ucla.edu/stat/stata/ado/analysis
3) click on (click here to install)
4) wait till it reports that installation is complete
5) now type help collin in the STATA command window to see

more info on collinearity diagnostics.

The following statement will perform liniar regression and collinearity
diagnostics.

reg y x1 x2 x3
collin varlist

c. Testing for Heteroskedasticity
There are two statements in STATA that test for heteroscedasticity -
hettest and whitetst.

 31

hettest is available in STATA as a default, whereas the whitetst
command needs to be downloaded within STATA from the internet. Both
test the null hypothesis that the variance of the residuals is not
heteroscedastic. Therefore, if the p-value is very small, we would have to
reject the hypothesis and accept the alternative hypothesis that the
variance is heteroscedastic.

The statement below will perform liniar regression and test for
heteroscedasticity using Breusch-Pagan / Cook-Weisberg test.

reg y x1 x2 x3
hettest

To use the White test, first you will need to download and install whitetst
within STATA. To find the source for downloading follow the steps
below:

1) type findit whitetst in the STATA command window
2) click on sg137 next to STB-55
3) click on (click here to install)
4) wait till it reports that installation is complete
5) now type help whitetst in the STATA command window to see

more info on White’s test.

The following statement will perform liniar regression and test for
heteroscedasticity using White’s test.

reg y x1 x2 x3
whitetst

d. Testing for Autocorrelation
In STATA serial autocorrelation can be tested using Durbin-Watson d-
statistics. There are two steps for performing DW test. First, using tsset
you will need to declare data to be time series and specify the time
variable, and second, using dwstat statement test for the evidence of
serial autocorrelation. The general statement for performing DW test is
provided below.

tsset timevar, options

where, timevar specifies the time variable and options indicate how
timevar will be displayed, i.e. daily, monthly, quarterly, or else.

Table below lists all options available in STATA for timevar. If no
option is listed, it is identical to the generic.

 32

Option Description
daily display time scales as daily (%td, 0 =

1jan1960)
weekly display time scales as weekly (%tw, 0 =

1960w1)
monthly display time scales as monthly (%tm, 0 =

1960m1)
quarterly display time scales as quarterly (%tq, 0 =

1960q1)
halfyearly display time scales as half-yearly

(%th, 0 = 1960h1)
yearly display time scales as yearly

(%ty, 0 = 1960 = 1960)
generic display time scales as generic (%tg, 0 = ?)
format(%fmt) indicate how timevar will be displayed

The statement below declares that data are time-series, sets variable year
as the time variable (option=yearly) and generates DW d-statistics.

tsset year, yearly
dwstat

e. Hypothesis testing
STATA statement test performs Wald tests for simple and composite
linear hypothesis about the parameters of the most recently fitted model.

The full syntax for test statement is:

test spec, options

where, spec specifies the testable hypothesis and options indicate the
nature of the test.

Other tests:
- likelihood ratio test: see lrtest
- Wald-type test of nonlinear hypothesis: see testnl

 33

Below is the list of options:

Options Description
mtest[(opt)] test each condition separately
coef report estimated constrained coefficients
accumulate test hypothesis jointly with previously

tested hypotheses
notest suppress the output
common test only variables common to all the

equations
constant include the constant in coefficients to be

tested
nosvyadjust carry out the Wald test as W/k ~ F(k,d); for

use
 with svy estimation commands
minimum perform test with the constant, drop terms

until the test becomes nonsingular, and test
without the constant on the remaining
terms; highly technical

matvlc(matname) save the variance-covariance matrix;
programmer's option

Below are some examples of hypothesis testing. All tests should be
performed after regression. For example,

regress y x1 x2 x3 x4

1. Ho: βx1= βx2= βx3

test x1 = x2 = x3

2. Ho: (βx1+ βx3)/2= βx2

test (x1 + x2)/2 = x3

3. Ho: βx1= βx3 and βx2= βx4

test (x1 = x3) (x2=x4)

4. Ho: βx1= 0.6 and βx4= -1.1

test (x1 = 0.6) (x4=-1.1)

5. Ho: βx1=0, βx2=0, βx3=0, βx1=0 [test jointly]

test x1 x2 x3 x4, mtest

 34

6. Ho: βx1=0, βx2=0, βx3=0, βx1=0 [test each separately]

test x1 x2 x3 x4, mtest

7. Ho: βx1=0, βx2=0.7, and βx3=(-1.2) [test each separately]

test (x1=0) (x2=0.7) (x3=-1.2), mtest

8. Ho: 2×βx3 + 0.5 = βx1

test 2*x3 + 0.5 = x1

9. Same as no. 8 but we also want to see what the constrained parameter
estimates look like.
test 2*x3 + 0.5 = x1, coef

f. Confidence Intervals

STATA statement ci computes standard errors and confidence intervals
for each of the variables in varlist. The full syntax for ci statement is:

ci varlist , options

List of options is provided below.

Options Descriptions
binomial binomial 0/1 variables; compute exact

confidence intervals
poisson Poisson variables; compute exact

confidence intervals
exposure(varname) exposure variable; implies poisson
exact calculate exact confidence intervals; the

default
wald calculate Wald confidence intervals
wilson calculate Wilson confidence intervals
agresti calculate Agresti-Coull confidence

intervals
jeffreys calculate Jeffreys confidence intervals
total output all groups combined (for use with

by only)
separator(#) draw separator line after every # variables;
 default is separator(5)
level(#) set confidence level; default is level(95)

 35

NOTE: exact, wald, agresti, wilson and jeffreys
options require the binomial option to be specified first

Examples:

1. ci x1 x2
2. ci x1 x2 x5 , level(99)
3. ci x4, binomial Wilson level(90)

STATA statement lincom computes point estimates, standard errors, t or
z statistics, p-values, and confidence intervals for linear combinations of
coefficients after any estimation command. Results can optionally be
displayed as odds ratios, hazard ratios, incidence-rate ratios, or relative
risk ratios.

Full syntax for this statement is:

lincom exp, options

where, exp is a combination of algebraic and/or string expressions that
are specified in a natural way using the standard rules of hierarchy.
Parentheses are used to force a different order of evaluation.

Options Descriptions
eform generic label; exp(b); the default
or odds ratio
hr hazard ratio
irr incidence-rate ratio
rrr relative-risk ratio

Examples:

regress y x1 x2 x3 x4

1. lincom x2 - x1
2. lincom 3*x3 + 1.25*x1 – 1.36

g. Prediction
STATA statement predict calculates predictions, residuals, influence
statistics, and the like after estimation. Exactly what predict can do is
determined by the previous estimation command; command-specific
options are documented with each estimation command. Regardless of
command-specific options, the actions of predict share certain similarities

 36

across estimation commands. The detailed use of predict statement
outlined in STATA manual is provided below.

predict newvar creates newvar containing "predicted values"--
numbers related to the E(y|x). For instance, after linear regression, predict
newvar creates xb and, after probit, creates the probability F(xb).
1) predict newvar, xb creates newvar containing xb. This may be

the same result as (1) (e.g., linear regression) or different (e.g., probit),
but regardless, option xb is allowed.

2) predict newvar, stdp creates newvar containing the standard
error of the linear prediction xb.

3) predict newvar, other_options may create newvar
containing other useful quantities; see help for the particular
estimation command to find out about other available options.

4) nooffset added to any of the above commands requests that the
calculation ignore any offset or exposure variable specified by
including the offset(varname) or exposure(varname)
options when you fitted the model.

predict can be used to make in-sample or out-of-sample
predictions:

5) predict calculates the requested statistic for all possible
observations, whether they were used in fitting the model or not.
predict does this for the standard options (1) through (3) and
generally does this for estimator-specific options (4).

6) predict newvar if e(sample), ... restricts the
prediction to the estimation subsample.

7) Some statistics make sense only with respect to the estimation
subsample. In such cases, the calculation is automatically
restricted to the estimation subsample, and the documentation for
the specific option states this. Even so, you can still specify if
e(sample) if you are uncertain.

The full syntax for predict statement is:

predict varNEW , options

where, varNEW is the name of the variable that does not exist in the
dataset yet. For the more complete list of options and their detailed
descriptions simply type help predict in the STATA command
window.

NOTE: this syntax is used for single-equation models. See help predict for
multiple-equation syntax and related options.

 37

Example:

regress y x1 x2 x3 x4
predict yhat

h. Extracting estimated parameters and standard errors
At any time to extract estimated parameters, standard errors and other so-
called built-in system variables use the following specifications.

_b[varname] for parameter estimates
_se[varname] for standard errors
_cons is equal to the number 1 when used directly and refers to

the intercept term when used indirectly, as in _b[_cons].
_n contains the number of the current observation.
_N contains the total number of observations in the dataset.
_pi contains the value of pi to machine precision.

See help system variables for more and detailed info on this
section.

5. IV regression (2SLS)
ivreg statement fits a linear regression model using instrumental variables (or
two-stage least squares) of depvar on varlist1 and varlist2, using
varlist_iv (along with varlist1) as instruments for varlist2.

In the language of two-stage least squares, varlist1 and varlist_iv are the
exogenous variables, and varlist2 are the endogenous variables.

Full syntax for ivreg statement is:

ivreg depvar varlist1 (varlist2 = varlist_iv) [weight] , options

where,

weight is used to weight the data (see Weighted least squares in Section 4),
options are listed in the table on the next page, and the rest are explained
above.

Examples:
1) ivreg y1 (y2 = z1 z2 z3) x1 x2 x3
2) ivreg y1 x1 x2 x3 (y2 = z1 z2 z3)
3) ivreg y1 x1 x2 (y2 y3 = z1 z2 z3)
4) ivreg y1 x1 x2 (y2 = z1 z2 z3) x3
5) ivreg y1 (y2 = z1 z2 z3) x1 x2 x3 [fw=pop]
6) ivreg y1 (y2 = z1 z2 z3) x1 x2 x3, robust
7) ivreg y1 (y2 = z1 z2 z3) x1 x2, robust cluster(var2)

 38

Options Descriptions
noconstant suppress constant term
hascons has user-supplied constant
vce(vcetype) vcetype may be robust, bootstrap,

or jackknife
robust synonym for vce(robust)
cluster(varname) adjust standard errors for intra-group

correlation
level(#) set confidence level; default is level(95)
first report first-stage estimates
beta report normalized beta coefficients
noheader display only the coefficient table
depname(varname) substitute dependent variable name
eform(string) report exponentiated coefficients and use

string to label them
+mse1 force MSE to be 1

6. Seemingly Unrelated Regression
To read details of SUR and find useful example, please type help suest in the
STATA command window.

7. Non-Linear Estimation
a. LOGIT

logit statement in STATA fits a maximum-likelihood logit model.
depvar=0 indicates a negative outcome; depvar!=0 & depvar!=.
(typically depvar=1) indicates a positive outcome.

STATA logistic statement displays estimates as odds ratios. Many
users prefer this to logit. Results are the same regardless of which you
use; both are the maximum-likelihood estimator.

Full syntax for logit command is:

logit depvar indepvars [weighttype=varname] , options

where, depvar is the dependent variable, indepvars are the
independent variables, weighttype specifies the type of weight to be
used (see Section 4 for details), varname specifies the weight variable,
and options are listed below.

 39

Options Descriptions
noconstant suppress constant term
offset(varname) include varname in model with coefficient

constrained to 1
asis retain perfect predictor variables
vce(vcetype) vcetype may be robust, bootstrap, or

jackknife
robust synonym for vce(robust)
cluster(varname) adjust standard errors for intragroup correlation
level(#) set confidence level; default is level(95)
or report odds ratios
maximize_options control the maximization process
+nocoef do not display coefficient table

b. PROBIT
probit statement in STATA fits a maximum-likelihood probit model.

Full probit syntax is:

probit depvar indepvars [weighttype=varname] , options

Syntax for probit regression with marginal effects reporting is:

 dprobit depvar indepvars [weighttype=varname], options

probit options description
noconstant suppress constant term
offset(varname) include varname in model with coefficient

constrained to 1
asis retain perfect predictor variables
vce(vcetype) vcetype may be robust, bootstrap,

or jackknife
robust synonym for vce(robust)
cluster(varname) adjust standard errors for intragroup

correlation
level(#) set confidence level; default is level(95)
maximize_options control the maximization process
+nocoef do not display the coefficient table

 40

dprobit options description
offset(varname) include varname in model with coefficient

constrained to 1
at(matname) point at which marginal effects are evaluated
asis retain perfect predictor variables
classic calculate mean effects for dummies like

those for continuous variables
robust compute standard errors using the

robust/sandwich estimator
cluster(varname) adjust standard errors for intragroup

correlation
level(#) set confidence level; default is level(95)
maximize_options control the maximization process
+nocoef do not display the coefficient table

8. External resources
This manual contains the basic information that will be needed to start learning
the STATA software. For more advanced use, I will encourage to use the
resources available through the STATA software help or others that are available
through other organizations. For your convenience, two sources containing one of
the most comprehensive resources are listed below:

a. SAS/STAT User Guide (PDF files). Dipartimento di Scienze Statistiche

"Paolo Fortunati", Bologna, Italia. Available at:
http://www2.stat.unibo.it/ManualiSas/stat/pdfidx.htm

Contains downloadable PDF files on all procedures available in SAS
(Version 8). This is a very comprehensive source and I would personally
encourage using it.

b. STATA Learning Resources. University of California at Los Angeles

Academic Technology Services. Available at:
http://www.ats.ucla.edu/stat/stata
Contains learning resources that help to master STATA software including
text and audio/video resources. This is especially useful for those who just
started to learn STATA.

c. In STATA command window type help keyword or search
keyword to explore STATA built in manuals. The keywords can be
anything that may be directly related to the information you are looking
for. For example, to find syntax for weighted least squares estimation, you
may use search weighted.

 41

http://www2.stat.unibo.it/ManualiSas/stat/pdfidx.htm
http://www.ats.ucla.edu/stat/stata

