ROBUST REGRESSION EXAMPLES (See next exhibit for summary results)
1.  Estimate regular regression using OLS, for comparison purposes;
first with all 51 cases and then excluding AK, DC, and NM
use 'c:\systat\grad.sys'
output robust01.prn

mglh
model grad=constant+inc+pbla+phis+edexp+urb
estimate
select state$<>"AK" AND state$<>"DC" AND state$<>"NM"
model grad = constant+inc+pbla+phis+edexp+urb
estimate

 Dep Var: GRAD   N: 51   Multiple R: 0.790   Squared multiple R: 0.624
 
 Adjusted squared multiple R: 0.582   Standard error of estimate: 5.139
 
 Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
 
 CONSTANT            69.042        5.373        0.0        .      12.851    0.000
 INC                  0.002        0.001        0.416     0.240    2.225    0.031
 PBLA                -0.414        0.063       -0.652     0.861   -6.622    0.000
 PHIS                -0.407        0.117       -0.334     0.906   -3.483    0.001
 EDEXP               -0.001        0.001       -0.147     0.342   -0.944    0.350
 URB                 -0.108        0.046       -0.307     0.491   -2.353    0.023
  
                              Analysis of Variance
  
 Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
 Regression              1973.308     5      394.662      14.941       0.000
 Residual                1188.641    45       26.414
 -------------------------------------------------------------------------------
 *** WARNING ***
 Case            2 has large leverage   (Leverage =        0.409)
 Case            9 has large leverage   (Leverage =        0.587)
 Case           32 has large leverage   (Leverage =        0.605)
  
 Durbin-Watson D Statistic     2.014
 First Order Autocorrelation  -0.020
  
 Dep Var: GRAD   N: 48   Multiple R: 0.827   Squared multiple R: 0.684
 
 Adjusted squared multiple R: 0.646   Standard error of estimate: 4.599
 
 Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
 
 CONSTANT            62.613        6.210        0.0        .      10.082    0.000
 INC                  0.002        0.001        0.487     0.275    2.944    0.005
 PBLA                -0.452        0.082       -0.544     0.768   -5.494    0.000
 PHIS                -0.759        0.161       -0.467     0.769   -4.718    0.000
 EDEXP               -0.001        0.001       -0.086     0.458   -0.674    0.504
 URB                 -0.110        0.047       -0.318     0.402   -2.324    0.025
  
                              Analysis of Variance
  
 Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
 Regression              1923.195     5      384.639      18.187       0.000
 Residual                 888.253    42       21.149
 -------------------------------------------------------------------------------
 Durbin-Watson D Statistic     2.071
 First Order Autocorrelation  -0.050

2.  Estimate same model using NONLIN (nonlinear regression); results should be the
same as regular OLS regression
nonlin
model grad = b0 + b1*inc + b2*pbla + b3*phis + b4*edexp + b5*urb
estimate

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .438131D+06 .101000D-01 .102000D-01 .103000D-01 .104000D-01 .105000D-01
                  .106000D-01
    1 .425439D+06 .102010D+01 .100769D-01 .409040D-02 .428860D-02 .103271D-01
                  .886020D-02
    2 .139249D+04 .675509D+02 .196676D-02-.404949D+00-.398282D+00-.106339D-02
                 -.105744D+00
    3 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    4 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    5 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277473.359     6    46245.560
    Residual        1188.641    45       26.414
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.624
           R(observed vs predicted) square      =        0.624
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 69.042        5.373       12.851       58.221       79.863
  B1                  0.002        0.001        2.225        0.000        0.003
  B2                 -0.414        0.063       -6.622       -0.540       -0.288
  B3                 -0.407        0.117       -3.483       -0.643       -0.172
  B4                 -0.001        0.001       -0.944       -0.004        0.001
  B5                 -0.108        0.046       -2.353       -0.201       -0.016

3.  Now estimate model with robust regression using ABOLUTE option (minimize sum of
absolute values of residuals); using estimate (rather than estimate/start) causes
NONLIN to use estimates from previous run as starting values

robust absolute
estimate


  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    1 .208544D+03 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00

     <lines omitted to save space>
     
   21 .199849D+03 .650830D+02 .297313D-02-.373308D+00-.428259D+00-.285335D-02
                 -.189517D+00
   22 .199848D+03 .650815D+02 .297293D-02-.373197D+00-.428261D+00-.285221D-02
                 -.189531D+00
   23 .199846D+03 .650803D+02 .297279D-02-.373114D+00-.428262D+00-.285135D-02
                 -.189541D+00
   24 .199845D+03 .650794D+02 .297268D-02-.373052D+00-.428263D+00-.285071D-02
                 -.189548D+00
   25 .199844D+03 .650787D+02 .297260D-02-.373005D+00-.428264D+00-.285023D-02
                 -.189553D+00
 
 ABSOLUTE robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 100180976520.95010
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277354.834     5    55470.967
    Residual        1307.166    46       28.417
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.995
 Mean corrected R-square (1-Residual/Corrected) =        0.587
           R(observed vs predicted) square      =        0.597
  
                                                       Wald Confidence Interval

 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 65.079         .            .            .            .
  B1                  0.003         .            .            .            .
  B2                 -0.373         .            .            .            .
  B3                 -0.428         .            .            .            .
  B4                 -0.003         .            .            .            .
  B5                 -0.190         .            .            .            .

4.  Robust regression - HUBER method
robust huber=1.7
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .914998D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118864D+04 .690420D+02 .178501D-02-.414116D+00-.407304D+00-.131865D-02
                 -.108312D+00
    3 .105045D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00

     <line omitted to save space>

   19 .983334D+03 .675216D+02 .203140D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117518D+00
   20 .983335D+03 .675216D+02 .203139D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117517D+00
   21 .983336D+03 .675217D+02 .203139D-02-.416370D+00-.485885D+00-.151955D-02
                 -.117517D+00
 
 HUBER robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.94287
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277455.501     6    46242.583
    Residual        1206.499    45       26.811
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.618
           R(observed vs predicted) square      =        0.620
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 67.522        5.453       12.382       56.538       78.505
  B1                  0.002        0.001        2.519        0.000        0.004
  B2                 -0.416        0.062       -6.705       -0.541       -0.291
  B3                 -0.486        0.135       -3.604       -0.757       -0.214
  B4                 -0.002        0.001       -1.066       -0.004        0.001
  B5                 -0.118        0.047       -2.520       -0.211       -0.024

5.  Robust regression - HAMPEL method
robust hampel=1.7,3.4,8.5
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .914998D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118864D+04 .690420D+02 .178501D-02-.414116D+00-.407304D+00-.131865D-02
                 -.108312D+00
   19 .983334D+03 .675216D+02 .203140D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117518D+00

     <lines omitted to save space>

   20 .983335D+03 .675216D+02 .203139D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117517D+00
   21 .983336D+03 .675217D+02 .203139D-02-.416370D+00-.485885D+00-.151955D-02
                 -.117517D+00
 
 HAMPEL robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.94287
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277455.501     6    46242.583
    Residual        1206.499    45       26.811
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.618
           R(observed vs predicted) square      =        0.620
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 67.522        5.453       12.382       56.538       78.505
  B1                  0.002        0.001        2.519        0.000        0.004
  B2                 -0.416        0.062       -6.705       -0.541       -0.291
  B3                 -0.486        0.135       -3.604       -0.757       -0.214
  B4                 -0.002        0.001       -1.066       -0.004        0.001
  B5                 -0.118        0.047       -2.520       -0.211       -0.024

6.  Robust regression - BISQUARE method
robust bisquare=7
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .883111D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118871D+04 .689837D+02 .178594D-02-.415258D+00-.405827D+00-.128777D-02
                 -.109111D+00
    3 .103273D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108313D+00
    4 .102758D+04 .685665D+02 .186363D-02-.412174D+00-.418392D+00-.137597D-02
                 -.113036D+00

     <lines omitted to save space>

   13 .101944D+04 .683667D+02 .189238D-02-.412276D+00-.426970D+00-.139400D-02
                 -.114079D+00
   14 .101943D+04 .683666D+02 .189239D-02-.412277D+00-.426974D+00-.139401D-02
                 -.114079D+00
   15 .101943D+04 .683666D+02 .189239D-02-.412277D+00-.426976D+00-.139401D-02
                 -.114079D+00
   16 .101943D+04 .683666D+02 .189239D-02-.412277D+00-.426977D+00-.139401D-02
                 -.114079D+00
 
 BISQUARE robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.93080
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277471.483     6    46245.247
    Residual        1190.517    45       26.456
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.623
           R(observed vs predicted) square      =        0.624
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 68.367        5.380       12.709       57.532       79.201
  B1                  0.002        0.001        2.353        0.000        0.004
  B2                 -0.412        0.062       -6.666       -0.537       -0.288
  B3                 -0.427        0.123       -3.462       -0.675       -0.179
  B4                 -0.001        0.001       -0.985       -0.004        0.001
  B5                 -0.114        0.046       -2.454       -0.208       -0.020

7.  Robust regression - TRIM method
robust trim=0.05
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .914998D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118864D+04 .690420D+02 .178501D-02-.414116D+00-.407304D+00-.131865D-02
                 -.108312D+00
    3 .102403D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    4 .100909D+04 .705726D+02 .160999D-02-.407914D+00-.367187D+00-.115956D-02
                 -.116915D+00
    5 .100909D+04 .705726D+02 .160999D-02-.407914D+00-.367187D+00-.115956D-02
                 -.116915D+00
    6 .100909D+04 .705726D+02 .160999D-02-.407914D+00-.367187D+00-.115956D-02
                 -.116915D+00
 
 TRIM robust regression:   49 cases have positive psi-weights
                               The average psi-weight is 1.00000
  
 Dependent variable is GRAD
 
 Zero weights, missing data or estimates reduced degrees of freedom
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277457.056     6    46242.843
    Residual        1204.944    43       28.022
  
       Total      278662.000    49
 Mean corrected     3161.950    48
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.619
           R(observed vs predicted) square      =        0.621
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 70.573        5.568       12.676       59.345       81.801
  B1                  0.002        0.001        1.929       -0.000        0.003
  B2                 -0.408        0.065       -6.256       -0.539       -0.276
  B3                 -0.367        0.121       -3.022       -0.612       -0.122
  B4                 -0.001        0.001       -0.798       -0.004        0.002
  B5                 -0.117        0.048       -2.444       -0.213       -0.020

8.  Robust regression - T method (weights based on Student t distribution)
robust t=5
estimate/start
output *

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .782650D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118960D+04 .688358D+02 .178572D-02-.418723D+00-.401193D+00-.119928D-02
                 -.111142D+00
    3 .737287D+03 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108313D+00

     <lines omitted to save space>

   22 .705950D+03 .660164D+02 .228639D-02-.410960D+00-.514123D+00-.177926D-02
                 -.128484D+00
   23 .705960D+03 .660166D+02 .228634D-02-.410960D+00-.514115D+00-.177923D-02
                 -.128483D+00
   24 .705967D+03 .660168D+02 .228632D-02-.410960D+00-.514108D+00-.177920D-02
                 -.128481D+00
   25 .705971D+03 .660169D+02 .228630D-02-.410960D+00-.514103D+00-.177918D-02
                 -.128481D+00
 
 T robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.79320
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277432.307     6    46238.718
    Residual        1229.693    45       27.327
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.611
           R(observed vs predicted) square      =        0.615
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 66.017        5.507       11.988       54.926       77.108
  B1                  0.002        0.001        2.769        0.001        0.004
  B2                 -0.411        0.061       -6.730       -0.534       -0.288
  B3                 -0.514        0.145       -3.539       -0.807       -0.222
  B4                 -0.002        0.001       -1.198       -0.005        0.001
  B5                 -0.128        0.049       -2.634       -0.227       -0.030

Last modified 7 April 1999