Robust Regression Using STATA 6

* OLS regression
. reg grad inc pbla phis edexp urb

  Source |       SS       df       MS                  Number of obs =      51
---------+------------------------------               F(  5,    45) =   14.94
   Model |  1973.30839     5  394.661678               Prob > F      =  0.0000
Residual |  1188.64143    45   26.414254               R-squared     =  0.6241
---------+------------------------------               Adj R-squared =  0.5823
   Total |  3161.94982    50  63.2389964               Root MSE      =  5.1395

------------------------------------------------------------------------------
    grad |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
     inc |    .001785   .0008021      2.225   0.031       .0001695    .0034005
    pbla |  -.4141165    .062532     -6.622   0.000      -.5400623   -.2881706
    phis |  -.4073045   .1169389     -3.483   0.001      -.6428316   -.1717774
   edexp |  -.0013187   .0013975     -0.944   0.350      -.0041334    .0014961
     urb |  -.1083125   .0460315     -2.353   0.023      -.2010247   -.0156004
   _cons |   69.04199   5.372707     12.851   0.000        58.2208    79.86317
 

* qreg performs least absolute residuals or minimum L1-norm regression
. qreg grad inc pbla phis edexp urb
Iteration  1:  WLS sum of weighted deviations =  208.54367
Iteration  1: sum of abs. weighted deviations =  236.21414
Iteration  2: sum of abs. weighted deviations =  207.28992
Iteration  3: sum of abs. weighted deviations =  201.05331
Iteration  4: sum of abs. weighted deviations =  200.34445
Iteration  5: sum of abs. weighted deviations =  199.84208

Median regression                                    Number of obs =        51
  Raw sum of deviations    312.5 (about 74.699997)
  Min sum of deviations 199.8421                     Pseudo R2     =    0.3605

------------------------------------------------------------------------------
    grad |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
     inc |   .0029724   .0015524      1.915   0.062      -.0001544    .0060992
    pbla |  -.3728657     .10048     -3.711   0.001      -.5752429   -.1704885
    phis |  -.4282676   .2360359     -1.814   0.076      -.9036684    .0471332
   edexp |  -.0028488    .002912     -0.978   0.333      -.0087138    .0030162
     urb |   -.189569   .0949354     -1.997   0.052      -.3807787    .0016407
   _cons |   65.07659   9.923346      6.558   0.000       45.08995    85.06324
 

* rreg performs robust regression using iteratively reweighted least squares with Huber and biweight functions tuned for 95% percent efficiency.
. rreg grad inc pbla phis edexp urb

   Huber iteration 1:  maximum difference in weights = .12234393
   Huber iteration 2:  maximum difference in weights = .05382205
   Huber iteration 3:  maximum difference in weights = .02203892
Biweight iteration 4:  maximum difference in weights = .1559363
Biweight iteration 5:  maximum difference in weights = .01087629
Biweight iteration 6:  maximum difference in weights = .00265105

Robust regression estimates                            Number of obs =      50
                                                       F(  5,    44) =   15.88
                                                       Prob > F      =  0.0000

------------------------------------------------------------------------------
    grad |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
     inc |   .0023026   .0008351      2.757   0.008       .0006196    .0039857
    pbla |  -.4363851   .0646035     -6.755   0.000      -.5665848   -.3061854
    phis |  -.7694453   .1837624     -4.187   0.000      -1.139794   -.3990965
   edexp |  -.0020356   .0014493     -1.405   0.167      -.0049566    .0008853
     urb |  -.0876499   .0483629     -1.812   0.077      -.1851189    .0098191
   _cons |   65.19619   5.641651     11.556   0.000       53.82619    76.56619
 

* The option tune(6), using a tuning constant of 6, down-weights outliers more steeply than the default 7.
. rreg grad inc pbla phis edexp urb, tune(6)

   Huber iteration 1:  maximum difference in weights = .12234393
   Huber iteration 2:  maximum difference in weights = .05382205
   Huber iteration 3:  maximum difference in weights = .02203892
Biweight iteration 4:  maximum difference in weights = .21024998
Biweight iteration 5:  maximum difference in weights = .02216084
Biweight iteration 6:  maximum difference in weights = .00613242

Robust regression estimates                            Number of obs =      50
                                                       F(  5,    44) =   14.70
                                                       Prob > F      =  0.0000

------------------------------------------------------------------------------
    grad |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
     inc |   .0023658   .0008732      2.709   0.010       .0006061    .0041255
    pbla |  -.4360197   .0675471     -6.455   0.000      -.5721519   -.2998875
    phis |  -.7707839   .1921354     -4.012   0.000      -1.158007   -.3835604
   edexp |  -.0020797   .0015154     -1.372   0.177      -.0051338    .0009743
     urb |  -.0919598   .0505665     -1.819   0.076      -.1938699    .0099503
   _cons |   64.86228   5.898709     10.996   0.000       52.97421    76.75035
------------------------------------------------------------------------------
 

* In Stata 6, I [Cheol-Sung Lee] could not find the relevant commands for robust regressions using Bisquare, Hampel, Trim, T method and Hadi method; I will check higher versions.