File D:\MYDOCS\YS209\SURVEY2A.SYD

>USE "D:\mydocs\ys209\survey2a.syd"

SYSTAT Rectangular file D:\mydocs\ys209\survey2a.syd,
created Tue Apr 18, 2000 at 09:50:17, contains variables:
 ID           SEX          AGE          MARITAL      EDUCATN      EMPLOY
 INCOME       RELIGION     BLUE         DEPRESS      LONELY       CRY
 SAD          FEARFUL      FAILURE      AS_GOOD      HOPEFUL      HAPPY
 ENJOY        BOTHERED     NO_EAT       EFFORT       BADSLEEP     GETGOING
 MIND         TALKLESS     UNFRNDLY     DISLIKE      TOTAL        CASECONT
 DRINK        HEALTHY      DOCTOR       MEDS         BED_DAYS     ILLNESS
 CHRONIC      MARITAL$     SEX$         AGE$         EDUC$        FEMALE
 CATH         JEWI         NONE         L10INC

>mglh
>model total=constant+age+female+l10inc+educatn+cath+jewi+none
>save depres1/model
>estimate
 

Dep Var: TOTAL   N: 256   Multiple R: 0.378694   Squared multiple R: 0.143409
Adjusted squared multiple R: 0.119231   Standard error of estimate: 8.361515

Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)

CONSTANT         19.776246     3.083963     0.000000   .        6.41261  0.00000
AGE              -0.080870     0.033446    -0.145591  0.952675 -2.41794  0.01633
FEMALE            2.475360     1.091627     0.136720  0.950133  2.26759  0.02422
L10INC           -5.842862     1.826501    -0.204619  0.844191 -3.19894  0.00156
EDUCATN          -0.766779     0.436350    -0.112592  0.841352 -1.75726  0.08011
CATH              0.940902     1.438833     0.040625  0.894977  0.65393  0.51376
JEWI              4.955468     1.915932     0.159361  0.909842  2.58645  0.01027
NONE              3.544925     1.403983     0.160391  0.855958  2.52491  0.01220

                             Analysis of Variance

Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
Regression           2902.844806     7   414.692115    5.931381    0.000002
Residual             1.73389E+04   248    69.914940

*** WARNING ***
Case          216 is an outlier        (Studentized Residual =     3.751558)
Case          220 is an outlier        (Studentized Residual =     4.040754)
Case          256 is an outlier        (Studentized Residual =     4.586381)

Durbin-Watson D Statistic     0.725
First Order Autocorrelation   0.599

Residuals have been saved.
Plot of Residuals against Predicted Values


File D:\MYDOCS\YS209\DEPRES1.SYD
 

>USE "D:\mydocs\ys209\depres1.SYD"

SYSTAT Rectangular file D:\mydocs\ys209\depres1.SYD,
created Tue Apr 18, 2000 at 09:53:38, contains variables:
 ESTIMATE     RESIDUAL     LEVERAGE     COOK         STUDENT      SEPRED
 TOTAL        X(1..7)

>let abse=abs(residual)
>let sqe=residual^2
>plot abse*estimate/stick smooth=lowess

Plot abse*estimate

>plot sqe*estimate/stick smooth=lowess
 
 

Plot sqe*estimate


>corr

CORR - Statistics

>pearson estimate abse sqe

Pearson correlation matrix

                  ESTIMATE         ABSE          SQE
 ESTIMATE         1.000000
 ABSE             0.244210     1.000000
 SQE              0.169025     0.919364     1.000000

Number of observations: 256

>mglh
>model abse=constant+estimate
>estimate
 

Dep Var: ABSE   N: 256   Multiple R: 0.244210   Squared multiple R: 0.059639
Adjusted squared multiple R: 0.055936   Standard error of estimate: 5.492641

Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
CONSTANT          2.245065     0.994566     0.000000   .        2.25733  0.02484
ESTIMATE          0.409169     0.101946     0.244210  1.000000  4.01359  0.00008

                             Analysis of Variance

Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
regression            485.991719     1   485.991719   16.108918    0.000079
Residual             7662.953848   254    30.169110

*** WARNING ***
Case          216 is an outlier        (Studentized Residual =     4.386271)
Case          220 is an outlier        (Studentized Residual =     5.229236)
Case          256 is an outlier        (Studentized Residual =     5.766427)

Durbin-Watson D Statistic     1.066
First Order Autocorrelation   0.409

Plot of Residuals against Predicted Values


 

>let shat=2.245065+0.409169*estimate
>let w=1/shat^2
>weight=w
>model total=constant+x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)
>estimate

Dep Var: TOTAL   N: 256   Multiple R: 0.339960   Squared multiple R: 0.115573
Adjusted squared multiple R: 0.090609   Standard error of estimate: 1.383587

Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
CONSTANT         16.180076     2.990710     0.000000   .        5.41011  0.00000
X(1)             -0.061528     0.031496    -0.119452  0.953800 -1.95351  0.05188
X(2)              2.395679     0.981830     0.151064  0.930405  2.44001  0.01539
X(3)             -4.495666     1.795997    -0.168512  0.786909 -2.50316  0.01295
X(4)             -0.449962     0.377421    -0.080274  0.786607 -1.19220  0.23432
X(5)              2.041598     1.283965     0.099145  0.917283  1.59007  0.11309
X(6)              3.335261     2.006405     0.102181  0.943827  1.66231  0.09771
X(7)              2.966680     1.407609     0.132249  0.905739  2.10760  0.03607

                             Analysis of Variance

Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
Regression             62.038105     7     8.862586    4.629645    0.000069
Residual              474.749500   248     1.914313
-------------------------------------------------------------------------------

*** WARNING ***
Case            1 has large leverage   (Leverage =     0.340706)
Case            2 has large leverage   (Leverage =     0.268667)
Case            3 has large leverage   (Leverage =     0.334971)
Case            3 is an outlier        (Studentized Residual =    -4.265162)

... Many, many lines deleted for the sake of space; SYSTAT seems to have a quirk that produces zillions of warnings in weighted regressions.

Case          254 is an outlier        (Studentized Residual =     9.719915)
Case          255 has large leverage   (Leverage =     1.140177)
Case          256 has large leverage   (Leverage =     0.805603)
Case          256 has large influence  (Cook distance =  1912.626896)

Durbin-Watson D Statistic     0.680
First Order Autocorrelation   0.621

Plot of Residuals against Predicted Values


 

>list total estimate residual shat w/n=10

  Case number        TOTAL     ESTIMATE     RESIDUAL         SHAT            W
        1         4.000000     4.983149    -0.983149     4.284015     0.054488
        2         4.000000     7.767519    -3.767519     5.423293     0.034000
        3         5.000000    10.064895    -5.064895     6.363308     0.024696
        4         6.000000     8.189291    -2.189291     5.595869     0.031935
        5         7.000000     9.229516    -2.229516     6.021497     0.027580
        6        15.000000     9.722067     5.277933     6.223033     0.025822
        7        10.000000     9.853902     0.146098     6.276976     0.025380
        8         0.000000    10.268245   -10.268245     6.446513     0.024063
        9         4.000000     7.173695    -3.173695     5.180319     0.037264
       10         8.000000     6.544159     1.455841     4.922732     0.041266

Weighting does not do much good in this case, probably because the standard error function has such low fit.



Last modified 18 Apr 2000