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ACHIEVEMENT AND ASCRIPTION IN EDUCATIONAL ATTAINMENT: 
GENETIC AND ENVIRONMENTAL INFLUENCES ON ADOLESCENT SCHOOLING  

 
Abstract 

 
The classic (“status attainment”) model of educational and occupational attainment suffers from 
three related shortcomings when used as a tool for comparative social mobility research or policy 
oriented studies of social inequality: (1) model parameters are ambiguous measures of the 
strength of ascription versus opportunity for achievement; (2) the model is vulnerable to 
incomplete specification of family background; and (3) associations between background 
variables and attainment outcomes confound environmental and genetic influences.  These issues 
can be addressed in part by using a model estimated from data on siblings who differ in their 
degree of biological relatedness that distinguishes between genetic and environmental influences 
on attainment.  This (“behavior genetic”) model estimates variance components due to influences 
of genetic endowment, shared (or common) family environment, and unshared (or specific) 
environment.  One can interpret the relative size of the genetic component (heritability) as 
measuring opportunity for achievement in a system of stratification, and the relative size of the 
shared environment component (environmentality) as measuring the extent of social ascription.  
A multivariate behavior genetic model of adolescent verbal IQ, grade point average, and college 
plans is estimated using data from the AddHealth study for six types of adolescent sibling pairs 
living in the same household: MZ twins, DZ twins, full siblings, half siblings, cousins, and non-
related siblings.  Consistent with a large behavior genetic literature on cognitive and educational 
measures, results show large genetic components, relatively small shared environmental 
components, and large unshared environmental component for all three outcomes.  The paper 
concludes that parameters of the behavior genetic model, unlike those of the status achievement 
model, can be used to compare mobility regimes across social systems, historical periods, and 
social contexts; the model thus constitutes a potentially important tool for comparative social 
mobility research.  
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ACHIEVEMENT AND ASCRIPTION IN EDUCATIONAL ATTAINMENT: 
GENETIC AND ENVIRONMENTAL INFLUENCES ON ADOLESCENT SCHOOLING  

 
INTRODUCTION 
Recurring questions in the literature on social stratification and mobility involve evaluating the 
role of ascription versus opportunity in educational and socio-economic attainment: whether 
some societies are more open than others, whether the importance of ascription is waning in the 
course of industrialization, or whether a given subgroup of society enjoys fewer opportunities.  
The status attainment model introduced by Blau and Duncan (1967) is one of the principal tools 
used to address such questions in a comparative perspective (Breen  and Jonsson 2005).  
Opportunity for achievement is typically associated with the effects on attainment of variables 
presumed to reflect inherent individual qualities and effort (e.g., cognitive ability, education); 
ascription or social reproduction is associated with family background characteristics (e.g., 
parental education, family SES).  Such models have thus played a prominent role in public 
debates concerning the relative roles of achievement and ascription in educational and socio-
economic attainment of individuals and groups. 
 The paper first presents a case that the status attainment model, as it is typically estimated 
from a sample of unrelated individuals most of whom were raised in their biological families is 
inadequate as a tool for comparing social mobility regimes due to three related shortcomings: (1) 
interpretations of model parameters as representing opportunity versus ascription are ambiguous; 
(2) the model is vulnerable to bias due to incomplete specification of family background; and (3) 
associations between explanatory variables and attainment outcomes confound environmental and 
genetic influences. 
 Second, some of the shortcomings of the attainment model can be alleviated by using an 
alternative, behavior model of attainment that explicitly distinguishes between genetic and 
environmental influences on educational or socio-economic outcomes.  To illustrate this point I 
will use data on pairs of siblings who differ in their degree of biological relatedness to estimate a 
model of schooling involving three variables: verbal IQ, grade point average, and college plans.  
The model decomposes the variance in verbal IQ and the educational measures into components 
corresponding to effects of genetic endowment, shared family environment, and unshared 
(individual-specific) environment.  This type of model springs from a research tradition that is 
well-established in other fields (such as mental health and psychology), but rarely represented in 
sociology (but see Lichtenstein et al. 1992; Rodgers et al. 2001).  The results -- strong effects of 
genetic factors, relatively small effects of shared environment, strong effects of unshared 
environment -- may be surprising to sociologists but are quite typical of findings in the behavior 
genetic literature on cognitive ability and educational achievement, as well as on personality traits 
and social attitudes (e.g., Pinker 2002; Rowe 1994; Turkheimer 2000).  
 Finally I propose that behavior genetic models of attainment such as the one developed in 
this paper are important for comparative social mobility research because they provide consistent 
measures of the relative importance of opportunity and ascription in a system of stratification: 
strength of ascription is measured as the proportion of variation in attainment attributable to the 
shared environment (“environmentality”) and opportunity as the proportion of variation 
attributable to genes (“heritability”).  This view is not new; it has been expressed earlier by 
researchers in several fields, including sociology (e.g., Guo and Stearns 2002; Heath et al. 1985; 
Rowe 1994; Scarr-Salapatek 1971a, 1971b; Taubman 1995a; see also Table 6), but has not taken 
root in our field.  To illustrate this perspective I will show how earlier research has used 
systematic differences in estimates of heritability and environmentality to assess differences in 
opportunity for achievement across groups and historical periods. 
 Subsequent sections discuss problems with the attainment model and the potential usefulness 
of a behavior genetic model of attainment.  Later sections discuss the data, develop the empirical 
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model of adolescent schooling, present the results of the analysis, and finally discusses broader 
implications of the findings for comparative stratification research.  
 
ACHIEVEMENT & ASCRIPTION 
Following Blau and Duncan (1967) sociologists have used sets of recursive equations to describe 
the process of educational and occupational attainment of individuals in a system of stratification.  
A typical model of status attainment (as this type of research came to be known) might consist of 
three equations 

(1) RsIQ = f1(FsOcc, FsEd) 
(2) RsEd = f2(RsIQ, FsOcc, FsEd) 
(3) RsOcc = f3(RsEd, RsIQ, FsOcc, FsEd) 

where IQ denotes a measure of cognitive ability, Ed is educational achievement, and Occ is a 
measure of occupational prestige; R and F refer to the respondent and the respondent's father, 
respectively (Duncan, Featherman, and Duncan 1972).  The functions f1, f2, and f3 are (typically) 
specified as linear.  The model envisions the career of the individual as a process in which each 
level of attainment is a function of previous attainment and characteristics of the family of origin. 
 Blau and Duncan (1967) discovered an empirical pattern that would be often replicated in 
later research.  First, the direct effect of FsOcc on RsOcc (controlling for RsEd) is small, from 
which they concluded that there is relatively little social ascription.  Second, the direct effect of 
RsEd on RsOcc is large; from this they concluded that (1) education serves to reproduce 
inequality (as most of the correlation between FsOcc and RsOcc is indirect, through RsEd), and 
(2) there is much opportunity for achievement (as the major part of the correlation of RsEd with 
RsOcc is driven by the RsEd residuals, so that achievement appears as largely a function of 
unmeasured individual resources independent of family background).  Overall Blau and Duncan 
interpret their findings as reflecting a trend of fading importance of ascription in modern 
industrial society. 
 The status attainment model was enthusiastically adopted by stratification researchers who 
saw in it a means of capturing opportunity for achievement (or openness) versus ascription.  
Opportunity is associated with effects of intermediate achievement variables (such as RsIQ and 
especially RsEd); ascription with effects of background variables (such as FsOcc or FsEd).   With 
these substantive interpretations of the parameters, the status attainment model can be used as a 
comparative device to evaluate the relative openness of the stratification system in different 
societies or historical periods.  The attainment model is a principal tool (together with other 
methodologies) in the collective work on comparative social mobility of Research Committee 28 
of the International Sociological Association (e.g., Breen 2004; Breen and Jonsson 2005; De 
Graaf and Ganzeboom 1993; Ganzeboom, Treiman, and Ultee 1991; Rijken 1999; Shavit and 
Blossfeld 1993).  
 Because of the close association of its parameters with normatively loaded concepts of equal 
opportunity, merit, and social reproduction, the attainment model resonates with powerful moral 
and political themes of social justice and has become a centerpiece in the policy oriented 
discourse on social stratification (Olneck 1977: 151).  In this normative vein, model parameters 
can be used to contrast the extent of meritocracy versus the enduring strength of social ascription 
in contemporary society.  These substantive interpretations of the parameters have enjoyed a wide 
consensus, even among researchers who differ in their philosophical and political preferences. 
 The classic attainment model is unfortunately inadequate as a tool for comparative 
stratification research or for use in normative debates on social inequality because of 
shortcomings related to (1) interpretations of model coefficients in terms of opportunity versus 
ascription; (2) the possibility of bias in estimation due to incomplete specification of family 
background; and (3) confounding of environmental and genetic influences.  These issues are 
discussed next. 
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Interpretation Issues 
Interpretations of the effects of background (such as family SES) or intermediate variables (such 
as IQ or education) on dependent outcomes as measuring the relative roles of ascription (or social 
inheritance) and opportunity are ambiguous.1  A given intermediate variable, such as IQ, may be 
viewed as reflecting in part social inheritance, rather than pure intrinsic talent.  The difficulty in 
linking normative concepts to model parameters is exposed in particularly sharp relief in the 
debate surrounding Herrnstein and Murray (1994).  The authors of The Bell Curve note that, 
controlling for SES of family of origin, cognitive ability (IQ) has a strong effect on a number of 
educational and socio-economic outcomes.  They interpret this pattern (together with other 
evidence) as symptomatic of increasing opportunity in contemporary U.S. society, a claim that 
stirred a controversy about both the relative importance of cognitive ability as a factor in 
attainment and whether effects of this variable measure ascription or opportunity.  Critics 
question the strength of ability effects and/or argue that IQ scores reflect social inheritance rather 
than native talent, so that IQ effects reflect social reproduction rather than opportunity for 
achievement (e.g., Fischer et al. 1996).  This ambiguity of interpretation compromises the 
usefulness of the attainment model for comparative research. 
 
Model Specification Issues 
The second issue concerns the open-ended specification of family background and is also 
illustrated by the debate surrounding The Bell Curve.  Herrnstein and Murray (1994) measure 
family background with a composite SES index based on parental education and income.  Critics 
point out that the SES composite does not adequately control for all the relevant aspects of family 
background.  Leaving important aspects of the family environment out of the regression model 
produces specification bias, which artificially inflates the apparent effect of cognitive ability and 
thus the evidence for opportunity.  They contend that if all these factors were properly controlled 
the effect of ability would be reduced or disappear.  Re-estimating some of Herrnstein and 
Murray’s (1994) models with more detailed family background measures does reduce (but 
typically does not eliminate) the estimated effects of cognitive ability on educational and socio-
economic outcomes (Fischer et al. 1996; Korenman and Winship 2000). 2,3  
 This exchange illustrates a general problem with the classic attainment model: the task of 
controlling for family background with measured variables is inherently open-ended.  There is no 
way to guarantee that all relevant aspects of the family environment have been included in the 
model, and therefore that the strength of ascription mechanisms has not been underestimated and 
opportunity overestimated.  The behavior genetic model described later does provide an estimate 
of the overall impact of family background variables (measured or unmeasured) on the trait under 
study and thus contributes to alleviate this problem, although the particular model used in this 

                                                      
1 Blau and Duncan’s (1967: 163) identification of ascription with “the circumstances of a person’s birth” 
and achievement with “consequences of [the person’s] own actions taken freely – that is, in the absence of 
any constraints deriving from the circumstances of his birth or rearing” reflects the voluntarism of Linton’s 
(1936) original distinction and strikes us today as involving problematic assumptions about free will 
(Pinker ‘s 2002 “ghost in the machine”; see also Eckland 1967: 193-194). 
2 Korenman and Winship (2000) also control for family background using a fixed-effects model based on 
siblings difference scores, following a tradition of research in sociology using data on siblings (Sewell et al. 
2004: 45-57).  A general problem with research in that tradition is that difference scores for ordinary (full) 
siblings include the effect of the fifty percent of genes that the siblings do not share, resulting in an inflated 
estimate of the environmental impact of the family.  It is instructive in that regard to contrast the 
sociological literature reviewed by Sewell et al. (2004: 45-57) with the genetically-informed literature on 
family effects reviewed by Turkheimer and Waldron (2000).  
3 Fischer et al. (1996) also argue that cognitive ability is an effect, not a cause, of exposure to education 
exposure and thus do not include cognitive ability as an independent variable in their model of educational 
attainment (see also Winship and Korenman 1997). 
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paper is only a partial remedy since the model does not estimate the effects of specific, measured 
background characteristics.  
 
Confounding of Genetic and Environmental Effects 
Perhaps surprisingly, the issue of the role of genes in occupational mobility and the problem of 
confounding environmental and genetic influences was already addressed in the mainstream 
sociological literature almost forty years ago.  In a remarkable paper Eckland (1967) argued that 
the social mobility research of his days (then mainly based on mobility tables) was flawed as it 
assumes, in estimating aggregate mobility, a null model in which sons from any category of 
origin are equally likely to reach any category of destination.4  If the abilities to reach certain 
destinations are in part genetically determined and, as a result, unequally distributed among sons 
from different origins, it follows that certain categories of sons will be more likely to reach 
certain destinations; without control for these genetic effects, the resulting asymmetry will be 
falsely attributed to a lack of perfect mobility.  Thus, Eckland claims, the degree of social 
mobility cannot be properly estimated without controlling for the association between origin and 
destination due to genetic transmission of abilities.  It is worth noting the implication that in 
measuring social rigidity or ascription, any association between occupational achievements of 
father and son due to genetic causes should be somehow partialled out from the overall 
association; ascription is identified with non-genetic (presumably environmental) causes of inter-
generational transmission of status.  
 In another landmark article Scarr and Weinberg (1978) presented results from a study of 
adopted children showing that the correlations between characteristics of adoptive parents and 
children's cognitive outcomes are very small, whereas the correlations between these outcomes 
and cognitive ability of the birth mother are larger, a pattern suggesting that effects of family 
background variables on achievement of children in biological families are largely due to genetic 
causes rather than the environmental mechanisms sociologists surmise.  Such results imply that 
the association between father's education and the educational attainment of a biological child 
may reflect in part the genetic transmission from father to offspring of inherited abilities that 
enhance educational achievement, rather than purely environmental influences.  It follows that the 
effect of father’s education is not a good measure of social inheritance, or ascription. 
 An important implication of Eckland’s (1967) and Scarr and Weinberg’s (1978) papers is 
that biological inheritance produces associations between background variables (e.g., parental 
education and occupation) and respondent outcomes (e.g., IQ and education) that are 
conceptually distinct from, and should not be confounded with, associations due to environmental 
mechanisms of social inheritance (see also Eckland 1979).  In the standard status achievement 
model estimated from respondents raised in their biological families effects of background 
variables on cognitive, educational and occupational characteristics of respondent are all 
confounded with genetic influences.  By bringing attention to the potential role of genetic factors 
in the attainment process, these researchers also point to a potential solution to some of the 
inadequacies of the attainment model, a solution based on explicit recognition and modeling of 
genetic mechanisms. 

 
THE ROLE OF GENES 
Even though their articles were published in a mainstream sociology journal, Eckland's (1967) 
and Scarr and Weinberg's (1978) critique of the classical attainment model did not have much 
impact on the field.  A small literature investigating the genetic bases of educational and 
occupational attainment did flourish briefly in the 1970s, involving economists and sociologists 

                                                      
4 Eckland’s (1967) article was an early manifestation of the ongoing revival of Darwinian thinking in the 
social sciences (Degler 1991: 224), all the more remarkable for appearing in sociology, the social science 
currently most resistant to biological thinking. 
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(see contributions in Taubman 1977).  The work of Christopher Jencks and colleagues in 
sociology was a prominent part of that literature (Jencks et al. 1972; Jencks and Brown 1977; 
Jencks 1980, 1992).  This research tradition persevered in economics (Behrman et al. 1980; 
Behrman, Pollack and Taubman 1995; Björklund, Jäntti and Solon 2005) but faded in sociology.5  
Meanwhile, since the early 1970s, a behavior genetic literature oriented mainly to the substantive 
fields of mental health, child development, and cognitive and personality psychology has 
experienced explosive growth (e.g., Plomin et al. 1997).  This literature has produced a 
sophisticated statistical methodology to disentangle genetic and environmental influences on 
behavior using data on twins, on adopted children, and on other relatives (Neale and Cardon 
1992; Neale and Maes, forthcoming; Rowe and Teachman 2001; Shanahan, Hofer, and Shanahan 
2003), as well as an accumulation of findings on a substantial role of heredity in cognitive ability, 
personality, and educational and occupational outcomes (e.g., Baker et al. 1996; Guo and Stearns 
2002; Heath et al. 1985; Lichtenstein et al. 1992; Rowe 1994; Rowe, Jacobson, and Van den Oord 
1999; Rowe, Vesterdal, and Rodgers 1999; Tambs et al. 1989).  These conclusions on the role of 
genes in behavior are finding their way to a broader public through popular books (Cohen 1999; 
Harris 1998; Pinker 2002). 
 Behavior genetic models partition the variance of a measurable trait (called a phenotype) into 
a component due to genetic inheritance, a component due to the shared (or common, between-
families) environment of siblings (aspects of the family and the larger rearing environment that 
tend to make siblings reared together alike), and a component due to the unshared (or specific, 
unique, within-family) environment of a sibling (environmental factors that differ among siblings 
and tend to make them different).  This decomposition of the phenotypic variance is the key to 
resolving the difficulties of the attainment model discussed earlier.6

 First, in the behavior genetic model a clear distinction can be made between the relative 
roles of achievement and ascription.  The shared environment component reflects the combined 
impact of such factors as social class, parental network of acquaintances, minority status, 
availability of reading materials at home, the quality of schools in the community, neighborhood 
characteristics, and other aspects of the rearing environment that constitute the common 
experience of siblings in a family and affect their outcomes (such as educational achievement) in 
a similar way.  These are the background characteristics that stratification researchers presumably 
have in mind when they conceptualize mechanisms of social reproduction and the ascriptive 
assignment of status.  The shared environment component of the total variance in outcome can be 
interpreted as a measure of ascription (Guo and Stearns 2002; Heath et al. 1985; Scarr-Salapatek 
1971a, 1971b).  As Rowe (1994: 33) writes: “This ratio [of shared environment to total 
phenotypic variance] has important policy implications, because it indicates how a phenotype 
might be changed by altering the rearing conditions of children with poor phenotypes to be like 
those of children with good ones.  The greater the shared rearing estimate, the more change can 
be expected to follow from changing rearing conditions”; see Jencks (1980: 734) for a similar 
argument.   
 The genetic component, as it reflects the extent to which individuals are able to achieve their 
genetic potential for the trait, represents a measure of opportunity for achievement.  In this 
interpretation the phenotype is viewed as resulting from the interaction of genetic endowment 

                                                      
5 Reasons may include the considerable influence of Jencks’s work combined with a widespread perception 
(perhaps encouraged by the difficulty of the technical parts of his work) that he had effectively ruled out 
any significant role of genes in the attainment process.  In contrast Jencks (1992) sees himself as having 
been “on the side of genes” in his earlier work.  Another factor may have been vigorous criticism by 
Goldberger (e.g., 1977, 1979) and the dominant anti-genetic zeitgeist in which this critique is rooted.  
Further discussion of this issue is beyond the scope of this paper.   
6 Many behavior genetic models also include a genetic dominance component capturing non-linear effects 
of allele combinations when a trait is affected by genes with dominant versus recessive alleles. 
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with the social environment and different social environments as more or less restrictive of the 
full expression of genetic potential.  As Guo and Stearns (2002) write with respect to verbal IQ: 
“the premise of our analysis [is that] social conditions moderate the expression of biological or 
genetic predispositions.  Different social conditions can result in a different level of genetic 
influences on a particular behavior (p. 885) … We define genetic potential for intellectual 
development as innate mental ability (p. 883)”.  Heritability measures realization of genetic 
potential and therefore opportunity for achievement. 
 The unshared environment represents a combination of measurement error and idiosyncratic 
environmental influences that affect the individual values of siblings on a trait in different ways; 
examples are birth order, a childhood disease that affects one sibling and not another, or 
association of siblings with different peer groups (Jensen 1997; Turkheimer and Waldron 2000). 
 Components of the total phenotypic variance can be compared across social settings, groups, 
or social systems.  Such comparisons potentially inform the comparative sociology of social 
stratification and mobility, permitting statements on the relative degrees of social openness across 
societies and historical periods, and across groups and social contexts within a given society.  The 
components are also meaningful conversation pieces in normative debates concerning social 
inequality.7

 Second, the problem of incomplete specification of family background is rendered moot in 
the context of the behavior genetic model.  The model measures the overall impact of the shared 
environment in "black box" fashion, without actually measuring, or even identifying, the 
variables involved.  Thus it is no longer possible to spuriously overestimate the role of 
achievement variable such as IQ or underestimate the role of family background by leaving out of 
the model some important aspect of the environment.  The type of behavior genetic models that I 
use in this paper, however, does not allow disaggregating the shared environmental components 
into effects of specific, measured background characteristics (such as SES), although other types 
of models do (Behrman et al. 1995; Loehlin, Horn, and Willerman 1997; Taubman 1995b; 
Waldman 1997).  In any case the shared environment component represents an upper bound for 
the effect of any specific dimension of the rearing environment on the outcome. 
 Finally the behavior genetic approach, by distinguishing between variance components due 
to genes, shared environment, and unshared environment effectively disentangles the 
confounding of genetic and environmental influences that affects the classic attainment model. 
 Behavior genetics designs capable of separating genetic and environmental effects are 
variously based on comparisons of twins (monozygotic or fraternal, raised together or apart), of 
adopted and biological children, and on other family designs involving individuals who differ in 
their degree of relatedness and/or exposure to the same family environment.8  The next two 
sections describe the data and the behavior genetic model of adolescent schooling. 

 
DATA 
Sibling Pairs in the National Longitudinal Study of Adolescent Health (AddHealth) 
Data are from the first two waves of AddHealth, a school-based longitudinal study of adolescents 
in grades 7 to 12.  Wave I was conducted in 1994-1995, and Wave II in 1996 (Bearman, Jones, 
and Udry 1997; Udry 1998).  Pairs of siblings living in the same household were identified and if 
                                                      
7 Comparison of behavior genetic estimates across contexts requires the assumption that the genetic 
variance for the trait is the same across the social contexts that are compared.  Genetic variances might 
differ because of different degrees of population heterogeneity or histories of assortative mating.  The 
assumption that the genetic variance is non-zero is not required: the few human traits with no genetic 
variance (e.g., the language one speaks and perhaps religious denomination) are appropriately characterized 
as purely ascriptive, in the sense that they are entirely determined by circumstances of birth. 
8 See Rodgers et al. (2001) for an excellent didactic example in sociology, and Rowe and Teachman (2001) 
for a survey of different behavior genetic designs; other examples in the sociological literature are Scarr 
and Weinberg (1978); Lichtenstein, Pedersen, and McClearn (1992); and Guo and Stearns (2002). 
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necessary a sibling was added to the sample to complete the pair.  Pairs were classified as MZ 
(monozygotic twins, N=170), DZ (dizygotic twins, N=290), FS (full siblings, N=702), HS (half 
siblings, N=242), CO (cousins, N=105), and NR (non related, N=174).  (The Ns are the numbers 
of sibling pairs actually used in the analysis, after the sample restrictions discussed below and 
cases lost due to missing data.)  Most same-sex twins were determined to be monozygotic (MZ) 
or dizygotic (DZ) on the basis of their self-reported confusability of appearance (i.e., look like 
two peas in a pod as young children; confused by strangers; by teachers; by family members).  
Some twin pairs of uncertain zygosity were classified on the basis of molecular genetic markers 
(see Rowe and Jacobson 1998 for details).  All pairs are used, even though data on an individual 
may be repeated (when the same individual is a member of both a twin pair, say, and of a pair of 
ordinary siblings), so that some of the pairs are not independent.  Studies have shown that 
estimates from such data are unbiased, although not as precise as they would be under full 
independence; the result is that tests of goodness of fit are more likely to be rejected than they 
would be under independence (Eaves et al. 1999: 67).9    
 
Measures 
Verbal IQ (VIQ) measures verbal cognitive ability; it is the score on a test consisting of even-
numbered items (87 items out of 175) in form L of the Peabody Picture Vocabulary Test (PPVT).  
The variable used in the analysis is AddHealth variable AH_PVT, which is age-standardized from 
the raw score and expressed on an IQ scale with mean 100 and standard deviation 15 (see also 
Neiss and Rowe 2000).  Grade Point Average (GPA) is calculated from questions of the form “At 
the most recent grading period what was your grade in English or language arts?”, “… in 
mathematics?”, “… in history or social studies?”, “… in science?”.  The four questions were 
asked in both Wave I and Wave II.  Original codes were reflected to range from A=5 down to 
F=1.  GPA is calculated as the average of available responses to the eight questions.  College 
Plans (CPL) is calculated from the questions “On a scale of 1 to 5, where 1 is low and 5 is high, 
how much do you want to go to college?”, and “…, how likely is it that you will go to college?”.  
The questions were asked in both Wave I and Wave II.  (Questions in Wave II added an answer 
category, coded 6, for respondents who already were in college.)  CPL is the average of answers 
of available responses to the four questions.  
 
Sample Restrictions 
As respondents whose native language is not English are known to achieve lower scores on the 
English version of the PPVT on which VIQ is based, only blacks and non-Hispanic whites were 
included in the analysis.  Preliminary analyses of sibling correlations also revealed a few outlying 
observations with very low VIQ scores (below 50).  Such low scores are likely the result of either 
profound retardation or a survey artifact and inconsistent with the assumptions of polygenic 
inheritance and multivariate normality underlying model estimation; these observations were 
excluded from the data set. 
 
Data Transformations  
Average VIQ score is about 12 points less for blacks compared to whites, and about 2 points less 
for females compared to males.  There are also significant race and sex differences in GPA, and a 
smaller sex (but not race) difference in CPL.  Since siblings living in the same family are usually 
of the same race, mean race differences inflate correlations among all siblings, which tends to 
inflate estimates of shared environmental effects in behavior genetic models (Rowe, Jacobson, 
and Van den Oord 1999).  Mean sex differences tend to increase variances for opposite-sex 
siblings relative to same-sex siblings and also distort genetic estimates.  To control these 
                                                      
9 There is much less overlap in the data used in this paper, compared to the multiple-pedigrees design used 
by Eaves et al. (1999). 
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differences while keeping the genetic analysis simple I standardized each variable within each of 
the four race by sex categories (black female, black male, white female, white male).  There is 
substantial age variation among these adolescents in 7 to 12 grades.  However, VIQ is already 
age-standardized, and associations of age with other measures, while statistically significant in 
this large sample, are substantively minute: the largest effect of age, on CPL, is .06.  Thus age is 
not controlled further. 
 
MODEL AND METHODS 
The school attainment model is depicted in Figure 1.  It is a structural equations model (SEM) 
containing both observed variables represented by squares and unmeasured, latent variables 
represented by circles.10  The model can be viewed as a behavior genetic extension of a classical 
educational attainment model describing the recursive interrelationships of verbal IQ (VIQ), 
grade point average (GPA), and college plans (CPL).11  Straight arrows between VIQ and GPA 
and CPL, and between GPA and CPL, represent elements of the classic path model relating the 
three variables in a recursive fashion. Thus, verbal IQ is assumed to affect both GPA and college 
plans; GPA also directly affects CPL.  I will refer to this subset of effects as the phenotypic part 
of the model. 

------  Figure 1 about here  ------ 
 The behavior genetic aspects are embodied in the remaining, latent variables.  Measured 
variables for a given sibling are shown as functions of three genetic factors, A1, A2, and A3 that are 
assumed uncorrelated within sibling.  The first genetic factor, A1, affects all three phenotypes 
VIQ, GPA, and CPL.  The second genetic factor, A2, affects only GPA and CPL, and the third, A3, 
affects CPL only.  This patterning of the paths is called a Cholesky factorization (Neale and 
Cardon 1992; Neale and Maes, forthcoming; see empirical examples in Emde and Hewitt 2001).  
The Cholesky structure is justified on both substantive and methodological grounds.  
Substantively, each genetic factor is viewed as a distinct (non-overlapping) set of genes.  The first 
set, A1, consists of all genes that affect all three measures of attainment, possibly with different 
strengths; the factor A2 then consists of genes affecting GPA and CPL only; and finally A3 
consists of additional genes that affect CPL exclusively.  Methodologically, the Cholesky 
structure is desirable because it corresponds to the unique (up to multiplications of the columns 
by –1) lower triangular matrix X of path coefficients such that A=XX', where A is the positive 
definite predicted covariance matrix of the genetic factors.  Postulating the factor pattern X as 
Cholesky insures at once the uniqueness of X and positive definiteness of the predicted 
covariance matrix A (Neale and Maes, forthcoming). 
 Substantively the matrix A=XX' represents the genetic component of the total predicted 
covariance matrix of the measured variables, containing the inherited components of the 
phenotypic variances (on the diagonal) and inherited components of the covariances among the 
variables (off the diagonal).  The Cholesky factorization represents a saturated model that can be 
constrained (by fixing parameters to zero) to yield substantively meaningful nested sub-models.  
The common factor sub-model is one in which the latent source of variation is reduced to a single 
common factor (e.g., the X matrix is reduced to a single column corresponding to A1).  In the 
independent factors sub-model, by contrast, each factor A1, A2, and A3 affects only one of the 
observed variables, so the X matrix is diagonal.  These sub-models can be statistically tested.  

                                                      
10 I use the SEM approach in the multivariate analysis carried out for this paper.  There is an alternative 
regression-based behavior genetic methodology appropriate for univariate analysis called DF analysis 
(DeFries and Fulker 1985; Kohler and Rodgers 2001).  
11 For simplicity the model is shown with measured dependent variables, represented in squares; an 
alternative approach would be to distinguish between latent true scores for VIQ, GPA, and CPL (in circles) 
each linked to its respective indicator (in a square) by a fixed path equal to the square root of the indicator’s 
estimated reliability (see Loehlin 2004).   
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 Each genetic factor for one sibling is correlated with the corresponding factor for the other 
sibling by a quantity k corresponding to the degree of relatedness of siblings, i.e. the proportion of 
genes that they share by common descent.  MZ twins have the same genes, so their genetic 
factors are identical and k is always equal to 1.0.  When mating is random (a strong assumption 
that will be relaxed later) DZ twins and full siblings share half their genes, so k =.5.  Genetic 
correlations for the remaining sibling types are then k =.25 for half siblings; k =.125 for cousins; 
and k =0 for non related siblings.  It is the ability to use genetic theory to specify in advance the 
association between genotypes of siblings -- an idea going back to Fisher (1918) -- that gives 
behavior genetic models the leverage to disentangle genetic from environmental effects. 
 Latent factors C1, C2, and C3 represent the shared or common environment of siblings, which 
corresponds to the rearing environment as usually understood by sociologists, consisting of such 
variables as social class or family SES, quality of schools in the community, ethnic culture, 
family connections, etc., that affect siblings reared in the same environment in the same ways and 
thus contribute to make them phenotypically similar.  The shared environment is decomposed 
into a Cholesky structure involving three orthogonal factors C1, C2, and C3, in the same way as 
the genetic factor structure.  The C factors are assumed uncorrelated within sibling; as the shared 
environment is assumed to affect each sibling in the same way, the correlation of each C factor 
across siblings is fixed to 1. 
 Finally, latent factors E1, E2, and E3 represent the unshared or unique environment of each 
sibling, consisting of sibling-specific experiences that contribute to make siblings phenotypically 
different from each other.  Such differentiating environmental influences might include parental 
preference, birth order, influences of different teachers or peers, or a disease affecting one sibling 
but not the other.  In this model the specific environment also includes errors of measurement in 
the variables.  The unshared environment too is modeled as a Cholesky structure composed of 
three factors uncorrelated within sibling.  The sibling-specificity assumption is implemented by 
fixing to 0 the correlation of each factor across siblings. 
 The model is estimated by deriving mathematically the expected covariance matrix of the 
observed variables for each type of sibling pairs as a function of model parameters.12  Each 
matrix has dimension 6 by 6, with rows and columns corresponding to the observed phenotypes 
for each sibling (i.e., VIQ1, GPA1, CPL1, VIQ2, GPA2, CPL2 where subscripts denote siblings in a 
pair).  The parameters of the model are then estimated simultaneously for the 6 types of siblings 
by minimizing the discrepancies between expected and observed covariance matrices according 
to the maximum likelihood (ML) criterion (Bollen 1989; Loehlin 2004).  The SEM program Mx 
was used (Neale et al. 2003).  Each 6 by 6 covariance matrix provides (6x7)/2 = 21 statistics 
(variances or covariances), so there is a total of 126 statistics over the 6 groups of sibling pairs.  
The full model contains 21 path coefficients to be estimated (6 for each Cholesky factorization 
plus 3 for the phenotypic model), so there are 105 df remaining to test the fit of the model. 
 
RESULTS 
Following the recommended strategy, model parameters are estimated from covariance matrices 
rather than from correlations (Loehlin 2004; Neale and Maes, forthcoming).  However, it is 
instructive to look at correlations to get a sense of the information used to estimate the variance 
components is based.  Correlations for the six types of sibling pairs are shown in Table 1.  
Correlations across siblings for the same variables are shown in bold type.  Comparing MZ and 
DZ twins in the top panel of the table it appears that cross-sibling correlations for MZ twins 
(below the diagonal) are high, .724, .660 and .663 for VIQ, GPA, and CPL, respectively.  The 
corresponding correlations for DZ twins (above the diagonal) are smaller, typically about half that 

                                                      
12 The derivation of the model and the Mx script used in the analysis are available from the author at 
http://www.unc.edu/~nielsen/sf05/. 
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for MZ twins except for CPL: .356, .332, and .264.13  A classic estimator of heritability (the 
proportion of the variance in a trait associated with the genotype) is twice the difference between 
the correlations of MZ and DZ twins.  Thus one can estimate heritability as 2(.724 - .356) = .736 
for VIQ, 2(.660 - .332) = .656 for GPA, and 2(.663 - .264) = .798 for CPL.  These heritability 
values are not incompatible with those found in other studies of cognition-related outcomes for 
adolescents and young adults (e.g., Plomin and Petrill 1997).  At the other extreme of relatedness, 
correlations for non-related siblings living in the same household (third panel of Table 1, above 
diagonal) are estimates of the pure impact of the shared environment of siblings on the outcomes; 
their small sizes (.063, .080 and .190) constitute a preliminary hint that the shared environment is 
not a strong determinant of these variables in this population, except perhaps for CPL. 

------  Table 1 about here  ------ 
 The full model is denoted BACE, as it specifies direct paths relating observed variables 
(contained in matrix B), in addition to a full Cholesky structure associated with each latent 
component A, C, and E.  Fit statistics for the BACE model are shown on the first line of Table 2.  
Unfortunately the B matrix in the BACE model is not identified; the reason is that the ACE part 
of the model completely accounts for the observed variables and their correlations, so B cannot 
improve the fit.14  B can be estimated in a simplified model with no genetic component, a single 
shared environment factor C1 affecting the observed variables and three uncorrelated latent 
variables E1, E2, and E3 representing the unshared environment of VIQ, GPA, and CPL, 
respectively.  (C1 is equivalent to a pair-specific fixed effect affecting each observed variable.)  
The model is labeled BC1Ed to indicate the shape of the matrices involved, with C reduced to a 
single column and E to a diagonal matrix.  

------  Table 2 about here  ------ 
 The fit statistics for the BC1Ed model are shown on line 2 of Table 2.  The χ2 is 555.888 for 
117 df (p<.001), which is not a satisfactory fit.  (With SEMs the goal is to obtain a non-
significant model.)  However with the large number of pairs in the data set (total N=1683) any 
discrepancy between expected and observed covariances tends to be significant.  The RMSEA is 
a measure of fit that adjusts for degrees of freedom (df) and for the sample size (McDonald 1989; 
Steiger and Lind 1980).  At .112 RMSEA is below the threshold of .10 that represents a good fit.  
To check the significance of B the model on line 3 of Table 2 drops B from the model.  This 
results in a χ2 increase of 89.657 for 3 degrees of freedom, a highly significant deterioration in fit.  
Thus the path coefficients relating the three observed variables of the model are significant in the 
context of this simplified specification of the latent structure with no genetic influences.  One 
reason for the poor overall fit of Models 2 and 3 is that the absence of genetic component implies 
identical covariance matrices for all six groups of sibling pairs, a pattern that is clearly 
inconsistent with the data (Table 1). 
 χ2 for the full ACE model is 153.930 with 105 df (p=.001), which at first sight is not a 
satisfactory fit.  However RMSEA is .042, below the threshold of .05 corresponding to a very 
good fit.  Fixing to zero the shared environment structure C (model AE) causes a highly 
significant increase in χ2 of 25.139 for 6 df (p<.001); therefore the shared environment structure 
cannot be dropped from the model.  Fixing the genetic structure A (model CE on line 6) produces 
a highly significant increases in χ2 of 142.273 with 6 df (p<.001); thus the genetic structure 
cannot be excluded either. 
 Models 7 to 11 test alternative specifications of the internal structure of the A, C, and E 
matrices, specifically whether the lower triangular matrix can be replaced by a simpler model 

                                                      
13 For CPL the DZ correlation (.264) is less than half the correlation for MZ twins (.663/2=.332).  This 
pattern suggests the presence of a dominance effect.  This possibility is addressed later. 
14 BACE produces the same estimates and the same fit as the ACE model (see line 4 of Table 2) for the 
behavior genetic part, but the estimated coefficients of B shift with changes in the initial values of the 
coefficients, indicating underidentification (Neale and Maes, forthcoming). 
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consisting of a diagonal matrix (three uncorrelated factors, each affecting a single outcome) or by 
a single column (a single factor affecting all three outcomes).  Reducing A to a single column 
(model A1CE, called the common factor model) or to a diagonal matrix (model AdCE, called the 
independent factors model) leads to unacceptably large χ2 increases (68.014 and 34.209 with 3 df, 
respectively).  Factors in the A matrix can be thought of as sets of genes.  Thus the tests on lines 7 
and 8 show that the genetic structure can neither be reduced to a single set of genes affecting all 
three outcomes (A1CE), nor to three uncorrelated sets of genes, each affecting a single factor 
(AdCE).  Likewise reducing the shared environment structure C to a diagonal matrix representing 
three independent factors (model ACdE) results in a significant increase in χ2 (13.507 for 3 df, 
p=.004).  However reducing C to a single column representing a single shared environment factor 
affecting all three variables (model AC1E) produces a non-significant increase in χ2 (4.877 for 3 
df, p = .181).  Finally, combining a common factor structure for the shared environment with a 
diagonal structure for the unshared environment (model AC1Ed) produces a slightly refined model 
that does not fit significantly worse than ACE (χ2 increase 11.505 for 6 df, p = .074) or AC1E (χ2 
increase 6.628 for 3 df, p = .085), and therefore becomes the favored model.  AC1Ed is favored 
over AC1E for its simplicity, despite a slightly larger AIC value: AIC is –62.565 for AC1Ed versus 
–63.193 for AC1E.15  Estimated parameters for the two models hardly differ. 

------  Table 3 about here  ------ 
------  Figure 2 about here  ------ 

 Table 3 and Figure 2 show standardized path coefficients for the favored AC1Ed model.  The 
favored model AC1Ed represents shared environmental influences acting on VIQ, GPA and CPL 
as a single latent factor affecting all three outcomes, which one might perhaps identify with a 
“privilege” factor capturing the cognitive and academic advantage shared by siblings due to their 
rearing environment.  The unshared environment, by contrast, is represented as separate factors, 
each one affecting a single measure.  It is the behavior one would expect if the unshared 
environment consisted largely of measurement error, and unmeasured causes of differences 
between siblings that behave statistically like measurement errors.  This is somewhat surprising 
theoretically, since one would expect that some unshared influences (e.g., perinatal damage 
affecting one sibling but not the other) would affect all three variables in similar ways.  Effects of 
the genetic factors tend to be the largest (.202 to .738), and effects of the shared environment the 
smallest (-.041 to .371), with effects of the unshared environment in between (.572 to .609). 

------  Table 4 about here  ------ 
 Table 4 shows the proportions of the total expected variances and covariances of the 
observed variables that are explained by the latent factors.  For example, the figures .536, .669, 
and .600 on the diagonal in the genetic factors panel represent proportions of variance explained 
by genetic factors, i.e. heritabilities (conventionally denoted h2).  Estimated heritability is high for 
GPA (.669) and for CPL (.600), and somewhat lower for VIQ (.536).  The figures .137, .002, and 
.030 on the diagonal in the shared environment panel represent proportions of variance explained 
by shared environmental factors, i.e. environmentalities (denoted c2).  Environmentality is 
substantial for VIQ (.137) but almost nil for GPA and CPL (.002 and .03, respectively).  Finally, 
the diagonal figures .327, .329, and .370 in the unshared environment panel indicate substantial 
levels of unshared environmental variance for all three outcomes.  Recall that the unshared 
environment here includes residual variance. 
 Off-diagonal elements in Table 4 represent the proportion of the covariance of two variables 
explained by a given set of factor.  The figures suggest that the associations between VIQ and 
GPA and between GPA and CPL are entirely due to genetic causes, while the association between 
VIQ and CPL is about 70% genetic in origin.  (Figures greater than 1.0 are an artifact due to the 

                                                      
15 Akaike’s Information Criterion (AIC) is a measure of model fit adjusted for degrees of freedom such that 
a smaller value indicates a better fit. 
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slight negative off-diagonal estimates in the shared environment panel.)  Thus associations among 
these cognitive and educational measures seem largely due to genetic factors. 

------  Table 5 about here  ------ 
 Figures in Table 5 are the squared values of the standardized coefficients of Table 3.  As the 
latent factors are independent within sibling, heritabilities, environmentalities, and specificities 
(shown in the Total column) are obtained as the sums of the squared paths, according to the rules 
of path analysis.  Table 5 suggests that the high heritability of the measures is due to largely 
independent genetic factors, i.e. that the genes associated with high VIQ, high GPA, and high 
CPL constitute substantially non-overlapping sets.  This impression is confirmed by computing 
the estimated correlations among the genetic components of the variances in the three outcome 
variables (Neale and Maes, forthcoming).  The calculations (not shown) yield genetic correlations 
of .431 for VIQ by GPA, .261 for VIQ by CPL, and .551 for GPA by CPL.  This picture of 
partially independent genetic factors is not consistent with the idea that school success reflects a 
single “academic ability” factor; rather, it suggests that scores on VIQ, GPA, and CPL might be 
associated with imperfectly overlapping sets of psychological traits, each with a partially 
independent genetic etiology.  Specifically one might speculate that the qualities responsible for 
high GPA and high CPL are affected not only by genes enhancing cognitive ability, but also by 
genes independently affecting non-cognitive traits, such as working habits or conscientiousness, 
that enhance both school success (as measured by GPA) and educational expectations. 
 Heritabilities and environmentalities are principal substantive properties of the model.  Table 
5 shows tests of significance for these parameters using ML-based confidence intervals.16  All 
estimates are significant, in the sense that the ML 95% confidence interval does not include zero, 
except for the environmentality parameter for GPA.  Thus the hypothesis cannot be rejected at the 
.05 level that GPA is entirely explained by a combination of genetic factors and individual-
specific, unshared environmental factors of a kind that cause siblings to be different from each 
other.  Environmentality for CPL also comes close to non-significance.  These results do not 
suggest strong impacts of shared environmental factors on the schooling process for these 
adolescents in U.S. schools at the end of the 20th century. 

 
ELABORATIONS 
Additional analyses and discussions elaborating on various aspects of the behavior genetic model 
were not included in this paper to save space.  This supplementary material17 addresses the 
following issues.  (1)  Whether the shared environment is more similar for DZ twins compared to 
full siblings, and for MZ twins compared to DZ twins.  (2)  Model estimation using twins only 
(MZ and DZ) rather than the 6 different types of siblings.  (3)  Effects of allowing assortative 
mating on parameter estimates.  (4)  Possibility of a genetic dominance effect in the model for 
CPL. 
 
DISCUSSION: HERITABILITY, ENVIRONMENTALITY, AND COMPARATIVE 
STRATIFICATION RESEARCH 
In this section I discuss the implications of the finding that variation in cognitive and educational 
measures is in large part genetic and the idea that heritability (as a measure of opportunity) and 
environmentality (as a measure of ascription) can be treated as macro-social variables 
characterizing the mobility process in different groups, social systems or historical periods.  
 
High Heritability / Low Environmentality of School Measures 

                                                      
16 ML-based confidence intervals are considered superior to those based on estimated standard errors 
(Neale et al. 2003; Neale and Miller 1997). 
17 Available from the author at http://www.unc.edu/~nielsen/sf05/. 
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Empirical results shown earlier suggest that the three measures of schooling are highly heritable, 
relatively unaffected by the shared environment, and substantially affected by unshared 
environments.  Furthermore, the shared environment seems to affect all three measures as a single 
latent “privilege” factor, whereas genetic influences are better represented as partially 
independent sets of genes specific to each outcome. 

 This kind of findings is, perhaps surprisingly, far from isolated.  The view that 
cognitive ability and educational success have a substantial genetic basis and are little affected by 
the shared environment has become commonplace in mainstream psychology (Brody 1992; 
Gottfredson [1994] 1997; Neisser et al. 1996; Sternberg and Grigorenko 1997; especially Hunt 
1997).  As McGue (1997) notes, the scientific opposition to these conclusions now consists of 
studies using behavior-genetic models tuned to produce lower heritability estimates (e.g., Daniels, 
Devlin and Roeder 1997; Feldman, Otto and Christiansen 2000).  There is also evidence for a role 
of genes in the determination of earnings (Behrman et al. 1995; Björklund, Jäntti and Solon 
2005), personality traits, and some social attitudes (Rowe 1994).  These findings have moved 
Turkheimer (2000) to proclaim three “laws” of behavior genetics, namely that (1) all human 
behavioral traits are heritable, (2) the effect of being raised in the same family is smaller than the 
effect of the genes, and (3) a substantial portion of the variation in complex human behavioral 
traits is not accounted for by the effects of genes or families.  Pinker (2002: 372-399) reckons that 
the three laws may be “the most important discoveries in the history of psychology (p. 372)”. 
 The most controversial implication of findings of a major role of genetic endowment in 
educational and socio-economic success is a concern that this knowledge could be misinterpreted 
to make inequality of school outcomes seem "natural, just, and immutable" and to justify 
opposition to efforts at improving school performance.  For this reason Goldberger (1979) 
suggests abandoning the enterprise of estimating genetic variance components of educational and 
socio-economic achievement (see also Goldberger 1977; Kamin and Goldberger 2002).18  
Taubman (1995a), declining Goldberger's advice, argues that behavior genetic models are 
valuable in providing a measure of opportunity for achievement.  As Behrman and Taubman 
(1995) write: "The share of the observed variation in schooling that is attributable to across-
family variability in environment [environmentality] provides a measure of inequality of 
schooling opportunity" (p. 250).  An instructive parallel is provided by the field of mental health, 
where Heston’s (1966) initially controversial finding of an important genetic factor in the 
etiology of schizophrenia, far from promoting the status quo, eventually proved liberating in 
disposing of the traditional environmental theory attributing the disease to defective mothering 
and in encouraging the development of ever more effective drug treatments (see also Plomin et al. 
1997: 70-71).19  

The discovery of a substantial genetic component in educational and socio-economic 
attainment may prove liberating, too.  Knowledge that environmental influences (including 
parenting style) have limited impact on the way children turn out may relieve the anxiety of 
parents without causing them to begin abusing or neglecting their children (Harris 1998; Pinker 
2002; Rowe 1994).  On the other hand, heritability and environmentality estimates refer to a 
specific population, characterized by an existing range of environments; these estimates give no 
guidance on how difficult it would be to change the trait through environmental manipulation 
outside the existing range (Jencks 1980, 1992: 92-119).20  Thus high heritability does not imply 

                                                      
18 See Pinker (2002) on “the fear of inequality” and “the fear of imperfectability” in reaction to findings of 
a substantial biological basis of human behavior. 
19 Conclusive evidence of a genetic basis for schizophrenia was obtained by behavior genetic methods 
related to those used in this paper long before a specific gene for schizophrenia was first identified in 2003 
(Science 2003). 
20 Although it stands to reason that environmental interventions outside the normal environmental range are 
more likely to be expensive, impractical, or unethical. 

Page 15 of 29 



that all environmental policies are ineffective (Eckland 1979).  Likewise, it is not because socio-
economic success has a genetic basis that inequality in socio-economic outcomes is desirable; to 
conclude otherwise is to commit the naturalistic fallacy (Pinker 2002: 162-163).  Time will tell 
how discoveries about the genetic basis of behavior will be received by sociologists, but it seems 
unlikely that the accumulated evidence for a major role of genes in socio-economic outcomes will 
be easily overthrown or ignored. 
 
Behavior Genetic Parameters as Macro-social Variables 
A cornerstone principle of behavior genetics is that heritability or environmentality are not fixed 
properties of a trait but population statistics, and thus inherently dependent on the specific social 
context.  Results presented earlier must be so qualified as pertaining to (non-Hispanic) 
adolescents in US schools at the end of the 20th Century.  For comparative social mobility 
research the parameters of the behavior-genetic model may be viewed as macro-social variables 
describing the nature of social mobility in a system of stratification.  Heritability h2 indexes 
opportunity for achievement (realization of native potential) and, conversely, environmentality c2 
measures inequality of opportunity due to differences in rearing environments (ascription or 
social reproduction).  The analysis reported in this paper describing one society at a particular 
point in history represents a single “case” from a macro-sociological comparative perspective, or 
for purposes of policy-oriented evaluations (since such evaluations also imply a comparison 
between an existing social system and a potential one considered more or less desirable on 
normative grounds). 
 The promise of the behavior genetic approach as a tool of comparative social mobility thus 
depends on securing comparable heritability and environmentality estimates for educational or 
socio-economic outcomes in different social systems or for subgroups within a social system, in 
order to score these macro-social units on a scale of ascription versus opportunity.  While such a 
systematic comparative corpus does not exist at present, one can already combine estimates from 
a number of published studies to construct a "demo" of what genetically informed comparative 
social mobility research might look like. 

------  Table 6 about here  ------ 
  Table 6 assembles published estimates of heritability and environmentality for cognitive or 
socio-economic attainment measures in different social contexts.  Comparisons of the behavior 
genetic parameters can be made either within study (between different groups or social contexts, 
or different aspects of attainment) or between studies.  In both types of comparisons the general 
hypothesis is that realization of genetic potential and thus heritability will be lower -- and 
environmentality correspondingly higher -- in social contexts that are either disadvantaged or less 
advanced on a social-developmental dimension (Guo and Stearns 2002; Heath et al. 1985; Scarr-
Salapatek 1971a, 1971b). 
 Despite being obtained from behavior genetic models that differ in their particulars, 
estimates in Table 6 exhibit for the most part a systematic pattern consistent with the notion that 
disadvantaged or less advanced contexts offer fewer achievement opportunities than contexts 
with opposite characteristics.  Heath et al.’s (1985) pioneering study in Norway found that 
heritability of educational attainment is relatively low (41%) for both males and females born 
before 1940, who would have been exposed to the more elitist traditional educational system in 
that country.  For two cohorts of males born later heritability rises to 74% and 67%, reflecting 
greater openness of the system; for females, however, heritability remains lower for these two 
cohorts (45% and 38%) suggesting that achievement opportunity has increased for males but not 
for females.  A similar scenario emerges from the study of IQ, educational attainment, and 
occupation in Norway by Tambs et al. (1989).  Here heritability is higher for the younger than for 
the older group, reflecting again less social ascription affecting the younger group.  The same 
inter-generational pattern obtains in the study of educational attainment in Australia by Baker et 
al. (1996), but the pattern is not as marked in the Norwegian data analyzed by Lichtenstein et al. 
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(1992).  Rowe, Vesterdal, and Rodgers (1999), using US data on young adults, find heritability to 
be higher for IQ and educational attainment (64% and 68%, respectively) than for hourly wages 
(42%) (see also Rowe, Jacobson  and Van den Oord 1999).  Guo and Stearns (2002) show that 
heritability of verbal IQ for adolescents in AddHealth is lower when a parent is unemployed than 
when no parent is unemployed (42% versus 54%), and for black as compared to white 
adolescents (58% versus 72%); lower heritability is again associated with fewer opportunities in 
disadvantaged social environments.  Finally Turkheimer et al. (2003) find higher h2 and lower c2 
for IQ in high-SES environments, compared to low-SES ones.    
 However cursory, this partial survey of published estimates of heritability and 
environmentality for educational and occupational outcomes already suggests some of the 
contextual variables on which genetically-informed comparative stratification research might 
focus: historical period and country -- as these factors proxy for the nature of the mobility regime; 
relative socio-economic advantage, race, ethnicity and sex -- as these characteristics define 
groups facing more or less opportunity; and age -- both as it defines cohorts subjected to different 
mobility regimes and as it may otherwise affect parameters of the behavior genetic model.21     
 
CONCLUSION 
The status attainment model has been used to evaluate the strength of ascription versus equality 
of opportunity in systems of stratification, but this use of the model is problematic.  Estimating 
ascription from the size of family background effects and opportunity from the size of cognitive 
ability and education effects is misleading because attribution of the effects of variables to 
ascription or opportunity is arbitrary, because the model is vulnerable to misspecification of 
family background, and because effects of background and achievement variables are all 
confounded with genetic influences.  Behavior genetic models estimated from twins and other 
family data can disentangle ascription from achievement by controlling for genetic influences and 
by providing an overall ("black box") estimate of shared environmental influences that does not 
require explicit measurement (or even knowledge) of the variables involved.  The impact of the 
shared environment (environmentality) may be interpreted as a measure of ascription, and 
heritability as a measure of opportunity for achievement.  A multivariate behavior genetic model 
of verbal IQ, grade point average and college plans estimated from data on adolescent sibling 
pairs who were in grades 7 to 12 of US schools in 1994-95 shows that variation in all three 
measures of educational attainment has a large genetic component and a relatively smaller shared 
environmental component.  These findings suggest high levels of educational opportunity for 
adolescents in US schools at the end of the 20th Century. 
 A cursory overview of published estimates of the parameters of behavior genetic models of 
attainment-related variables illustrates the possibilities of a comparative sociology of stratification 
systems using heritability and environmentality parameters as fundamental measures of ascription 
and opportunity for achievement in a system of stratification.  In this view heritability and 
environmentality are not fixed properties of a trait; they are properties of the stratification system 
that are expected to vary across societies, historical periods and social contexts.  Parameters of the 
genetic model are estimated, not as permanent properties of a trait such as intelligence, but as a 
descriptive feature of the social context that may tell us something valuable, say, about the way 
men and women fare differentially in the educational system in Norway after World War II, or 
how members of disadvantaged social or racial groups are less able to realize their native 
potential in the US at the end of the 20th Century. 
 One last comment about the broader methodological context of the analysis presented in this 
paper is needed.  The models used in the paper are based on the assumption of polygenic 
inheritance, i.e. that the phenotype under study is affected by a number of genes, each of which 
                                                      
21 A major discovery of behavior genetics in the last two decades is that heritability of cognitive ability 
increases, and environmentality declines, from childhood to late adulthood (Plomin and Petrill 1997). 
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has a relatively small effect on the phenotype (Fisher 1918).  Another, rapidly developing 
category of behavior genetic models focuses on individual loci, either to evaluate the contribution 
of a specific gene (segregation analysis) or to locate on the genome genes with large effects, 
using genetic markers (linkage analysis).  These methods have produced major findings, such as 
genes associated with schizophrenia or Alzheimer’s disease.  The success of the gene-finding 
methods is dependent on the existence of genes with large effects on a trait; only then can the 
effect of a specific gene be detected against the background of other genetic and environmental 
influences.  The possibility of identifying genes with large effects is methodologically attractive, 
since part of the genetic contribution is then associated with an explicitly measured variable (i.e., 
presence or absence of a given allele or marker); effects of other genes are treated as a residual, 
latent genetic factor.  There is a great deal of finality in the identification of a gene with a major 
effect on a given trait; when the trait in question is a physical or mental disorder, identification of 
the responsible locus may also facilitate development of a treatment.22

 Traits of interest in social mobility research, such as cognitive ability, dimensions of 
personality and measures of socio-economic achievement may, or may not, be affected by genes 
of major effect that stand out against the polygenic noise of other genes and the additional din of 
environmental effects.  When found, rare genes of large effect may not explain a large proportion 
of the genetic variance of a trait in the population.  Gene-finding methodologies may one day 
identify genes responsible for educational and socio-economic achievement (thus resolving the 
latent genetic component into observed DNA measures).  However to the extent that genetic 
influences on these outcomes are truly polygenic, structural equations models based on the 
assumption of polygenic inheritance like those estimated in this paper may prove useful for a long 
time to come (Neale and Maes, forthcoming). 

                                                      
22 Note that the same logic would apply to identification of a specific property of the environment (shared 
or unshared) with a large effect on the trait.  
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Table 1 – Correlations for six groups of siblings (N = number of sibling pairs) 
 
MZ twins (below diagonal, N=170) -- DZ twins (above diagonal, N=290) 
 VIQ1 GPA1 CPL1 VIQ2 GPA2 CPL2

VIQ1 -- .239 .172 .356 .047 .035
GPA1 .277 -- .273 .132 .332 .062
CPL1 .290 .378 -- .136 .105 .264
VIQ2 .724 .308 .239 -- .245 .136
GPA2 .182 .660 .322 .308 -- .292
CPL2 .325 .362 .663 .374 .393 --
Full siblings (below diagonal, N=702) -- Half siblings (above diagonal, N=242) 
 VIQ1 GPA1 CPL1 VIQ2 GPA2 CPL2

VIQ1 -- .183 .236 .310 -.103 .183
GPA1 .295 -- .434 .092 .278 .081
CPL1 .212 .380 -- .111 .102 .204
VIQ2 .411 .189 .148 -- .127 .203
GPA2 .163 .360 .245 .265 -- .295
CPL2 .133 .226 .332 .252 .406 --
Cousins (below diagonal, N=105) -- Non related siblings (above diagonal, N=174) 
 VIQ1 GPA1 CPL1 VIQ2 GPA2 CPL2

VIQ1 -- .292 .182 .063 -.101 .013
GPA1 .171 -- .372 -.066 .080 -.007
CPL1 .061 .206 -- .099 .169 .190
VIQ2 .354 .127 .007 -- .253 .155
GPA2 .090 .104 -.013 .191 -- .180
CPL2 .238 .207 .121 .271 .224 --
Note: Figures in bold type correspond to correlations for the same variable across siblings.  VIQ = 
verbal IQ; GPA = grade point average; CPL = college plans.  Subscripts 1, 2 denote siblings in a 
pair. 

Page 24 of 29 



Table 2 – Model comparisons 
 
 Fit statistics Tests 
Model χ2 df p AIC RMSEA Test Δχ2 Δ df p 
1. BACE 153.930 105 .001 -56.070 .042     
2. BC1Ed 555.888 117 .000 321.888 .112     
3. C1Ed 645.546 120 .000 405.546 .126 3 vs. 2 89.657 3 .000 
4. ACE 153.930 108 .002 -62.070 .041     
5. AE 179.069 114 .000 -48.931 .046 5 vs. 4 25.139 6 .000 
6. CE 296.203 114 .000 68.203 .079 6 vs. 4 142.273 6 .000 
7. A1CE 221.945 111 .000 -.055 .064 7 vs. 4 68.014 3 .000 
8. AdCE 188.139 111 .000 -33.861 .054 8 vs. 4 34.209 3 .000 
9. ACdE 167.437 111 .000 -54.563 .043 9 vs. 4 13.507 3 .004 
10. AC1E 158.807 111 .002 -63.193 .040 10 vs. 4 4.877 3 .181 
11. AC1Ed

a 165.435 114 .001 -62.565 .044 11 vs. 4 11.505 6 .074 
      11 vs. 10 6.628 3 .085 
Note: B = phenotypic paths; A = genetic paths; C = shared environment paths; E = specific environment 
paths; Ad, Cd, Ed: off diagonal elements of A, C, or E fixed (independent factors model); A1, C1: lower 
triangular matrix A, C reduced to single column vector (common factor model).  
a favored model 
 
 
Table 3 – Standardized path coefficients for genetic, shared environmental, and specific 
environmental factors for favored AC1Ed model (maximum likelihood estimates) 
   
 Genetic factors Shared environment Specific environment 
 A1 A2 A3 C1 C2 C3 E1 E2 E3

VIQ .732  .371 .572  
GPA .352 .738 -.041 0 0 .574 
CPL .202 .376 .646 .172 0 0 0 0 .609
Note: VIQ = verbal IQ; GPA = grade point average; CPL = college plans. 
0 denotes a coefficient fixed to zero 
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Table 4 – Variance and covariance components: Proportions of total predicted variance or 
covariance associated with genetic, shared environment, and specific environment factors for 
favored AC1Ed model 
   
 Genetic factors Shared environment Specific environment 
 VIQ GPA CPL VIQ GPA CPL VIQ GPA CPL
VIQ .536  .137 .327  
GPA 1.063 .669 -.063 .002  .329 
CPL .699 1.021 .600 .301 -.021 .030   .370
Note: VIQ = verbal IQ; GPA = grade point average; CPL = college plans. 
 
 
 
Table 5 – Squared standardized path coefficients and 95% maximum-likelihood confidence 
intervals for total genetic effects (heritabilities a2 = h2), total shared environmental effects 
(environmentalities c2), and total specific environmental effects (specificities e2) for favored 
AC1Ed model 
 
     95% CI 
Squared genetic paths Total (a2 or 

h2) 
Lower Upper 

VIQ .536   .536 .408 .649 
GPA .124 .545  .669 .585 .725 
CPL .041 .142 .418 .600 .493 .677 
Squared shared environmental paths Total (c2) Lower Upper 
VIQ .137   .137 .060 .217 
GPA .002   .002 .000 .043 
CPL .030   .030 .001 .093 
Squared specific environmental paths Total (e2) Lower Upper 
VIQ .327   .327 .269 .397 
GPA  .329  .329 .275 .394 
CPL   .370 .370 .310 .441 
Note:  VIQ = verbal IQ; GPA = grade point average; CPL = college plans.  Entries are squared 
standardized path coefficients for the effects of latent factors on observed variables; the sums of 
squared paths for a set of latent factors estimate heritabilities (a2 or h2), environmentalities (c2), 
and specificities (e2) of the observed variables 
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 Table 6 – Estimated heritability (h2), environmentality (c2) and unshared environment variance 
(e2) for attainment-related variables in various social groups or contexts 
 
Study Context and 

data 
Measure of 
attainment 

Comparison group h2 c2 e2

♂ & ♀ b. bef. 1940 41 47 12 
♂ b. 1940-49 74a 8 18 
♂ b. 1950-60 67a 20 13 
♀ b. 1940-49 45a 41 14 

Heath et al. 
1985 

Norway; twins, 
parents 

educational 
attainment 

♀ b. 1950-60 38a 50 12 
occupation youngest 43b   
educ. attain. youngest 51b   
IQ youngest 66b   
occupation oldest 16c 6 78 
educ. attain. oldest 10c 62 28 

Tambs et al. 
1989 

Norway, twins 
b. 1944-60 

IQ oldest 37c 45 18 
young ♂ 35 21 44 
old ♂ 30 12 39d

young ♀ 20 9 38d

Lichtenstein et 
al. 1992 

Norway, twins 
& adopted 

educational 
attainment 

old ♀ 12 46 21d

♂ ♀ b. bef. 1950 57 24 19 Baker et al. 
1996 

Australia educational 
attainment ♂ ♀ b. aft. 1950 82 18 - e

IQ  64 23 13 
educ. attain.   68 18 14 

Rowe, 
Vesterdal and 
Rodgers 1999 

US (NLSY); 
full & half sibs. 

hourly wages  42 8 49 
verbal IQ unemployed parent 42 39 19 
 no unemployed 

parent 
54 22 24 

 Black 58 19 23 

Guo and 
Stearns 2002 

US,  
MZ, DZ, FS, 
HS, CO, NR 
adolescent 
siblings  white 72 -1 29 

WISC IQ low SES 10 58 32 Turkheimer et 
al. 2003 

US, 7-year old 
twins   high SES 72 15 13 

Note: a figure includes genetic dominance component; b average of 3 groups, average for c2 and e2 
not given; c authors comment "this [oldest] sample is small and the estimates are unstable" (p. 
209); d figures do not add up to 100 because of additional "correlated environmental variance" 
component; e estimate correcting for phenotypic assortative mating for educational level. 
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Figure 1 – Full (BACE) model of adolescent schooling. 
Note: VIQ = verbal IQ, GPA = grade point average, CPL = college plans.  Each side (left or right) 
of the model corresponds to one of the siblings in a pair.  Latent variable sets A1, A2, and A3; C1, 
C2, C3; and E1, E2, E3 correspond to Cholesky (triangular) factorizations for genetic factors, 
shared environment factors, and unshared environment factors, respectively (see text for 
discussion).  Each genetic factor Aj is correlated across siblings by a quantity k representing the 
degree of relatedness of siblings (1.0 for MZ; .5 for DZ and FS; .25 for HS; .125 for CO; 0 for 
NR); each shared environmental factor Cj is assumed perfectly correlated (r=1) across siblings.  
Variances of all latent variables are set to 1.0.  
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Figure 2 – Standardized path coefficients for favored AC1Ed model. 
Note: VIQ = verbal IQ, GPA = grade point average, CPL = college plans.  A1, A2, A3 = genetic 
factors; C1 = shared environment factor; E1, E2, E3 = unshared environment factors.  Only one 
sibling is shown.  
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